ArticleOriginal scientific text
Title
Boundary behavior of subharmonic functions in nontangential accessible domains
Authors 1
Affiliations
- Department of Mathematics and Computer Science, University of Missouri-St. Louis, St. Louis, Missouri 63121, U.S.A.
Abstract
The following results concerning boundary behavior of subharmonic functions in the unit ball of are generalized to nontangential accessible domains in the sense of Jerison and Kenig [7]: (i) The classical theorem of Littlewood on the radial limits. (ii) Ziomek's theorem on the -nontangential limits. (iii) The localized version of the above two results and nontangential limits of Green potentials under a certain nontangential condition.
Keywords
subharmonic function, Green potential, boundary limit, NTA domain
Bibliography
- L. Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393-399.
- B. E. J. Dahlberg, On estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 272-288.
- B. E. J. Dahlberg, On the existence of radial boundary values for functions subharmonic in a Lipschitz domain, Indiana Univ. Math. J. 27 (1978), 515-526.
- J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer, New York, 1984.
- H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.
- L. L. Helms, Introduction of Potential Theory, Wiley-Interscience, New York, 1969.
- D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. in Math. 46 (1982), 80-147.
- D. S. Jerison and C. E. Kenig, Hardy spaces,
, and singular integrals on chord-arc domains, Math. Scand. 50 (1982), 221-247. - J. E. Littlewood, On functions subharmonic in a circle (II), Proc. London Math. Soc. (2) 28 (1928), 383-394.
- L. Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7 (1957), 183-281.
- E. M. Stein, On the theory of harmonic functions of several variables. II. Behavior near the boundary, Acta Math. 106 (1961), 137-174.
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
- J. C. Taylor, Fine and nontangential convergence on an NTA domain, Proc. Amer. Math. Soc. 91 (1984), 237-244.
- D. Ullrich, Radial limits of M-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), 501-518.
- K.-O. Widman, On the boundary behavior of solutions to a class of elliptic partial differential equations, Ark. Mat. 6 (1967), 485-533.
- R. Wittmann, Positive harmonic functions on nontangentially accessible domains, Math. Z. 190 (1985), 419-438.
- J.-M. Wu,
-densities and boundary behavior of Green potentials, Indiana Univ. Math. J. 28 (1979), 895-911. - L. Ziomek, On the boundary behavior in the metric
of subharmonic functions, Studia Math. 29 (1967), 97-105.