ArticleOriginal scientific text

Title

Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces

Authors 1

Affiliations

  1. Department of Mathematics, University College Dublin, Belfield Dublin 4, Ireland

Abstract

For U open in a locally convex space E it is shown in [31] that there is a complete locally convex space G(U) such that G(U)i=((U),τδ). Here, we assume U is balanced open in a Fréchet space and give necessary and sufficient conditions for G(U) to be Montel and reflexive. These results give an insight into the relationship between the τ0 and τω topologies on ℋ (U).

Bibliography

  1. R. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411.
  2. J. M. Ansemil and S. Ponte, Topologies associated with the compact open topology on ℋ(U), Proc. Roy. Irish Acad. 82A (1982), 121-128.
  3. J. M. Ansemil and S. Ponte, The barrelled topology associated with the compact-open topology on ℋ (U) and ℋ (K), Portugal. Math. 43 (1985-1986), 429-438.
  4. J. M. Ansemil and S. Ponte, The compact open topology and the Nachbin ported topologies on spaces of holomorphic functions, Arch. Math. (Basel) 51 (1988), 65-70.
  5. J. M. Ansemil and J. Taskinen, On a problem of topologies in infinite dimensional holomorphy, ibid. 54 (1990), 61-64.
  6. R. Aron, L. Moraes and R. Ryan, Factorization of holomorphic mappings in infinite dimensions, Math. Ann. 277 (1987), 617-628.
  7. P. Aviles and J. Mujica, Holomorphic germs and homogeneous polynomials on quasinormable metrizable spaces, Rend. Mat. 6 (1977), 117-127.
  8. J. A. Barroso, Topologias nos espaços de aplicações holomorfas ebtre espaços localmente convexos, An. Acad. Brasil. Ciênc. 43 (1971), 525-546.
  9. J. A. Barroso and L. Nachbin, Some topological properties of spaces of holomorphic mappings in infinitely many variables, in: Advances in Holomorphy, J. A. Barroso (ed.), North-Holland Math. Stud. 34, North-Holland, 1979, 67-91.
  10. K.-D. Bierstedt and J. Bonet, Density conditions in Fréchet and (DF)-spaces, Rev. Mat. Univ. Complut. Madrid 2 (1989), no. suplementario, 59-75.
  11. K.-D. Bierstedt and R. Meise, Aspects of inductive limits in spaces of germs of holomorphic functions on locally convex spaces and applications to a study of ((U),τω), in: Advances in Holomorphy, J. A. Barroso (ed.), North-Holland Math. Stud. 34, North-Holland, 1979, 111-178.
  12. P. Boland and S. Dineen, Holomorphic functions on fully nuclear spaces, Bull. Soc. Math. France 106 (1978), 311-336.
  13. J. Bonet, J. C. Dí az and J. Taskinen, Tensor stable Fréchet and (DF) spaces, Collect. Math., to appear.
  14. C. Boyd, Distinguished preduals of the space of holomorphic functions, Rev. Mat. Univ. Complut. Madrid, to appear.
  15. P. G. Casazza and E. W. Odell, Tsirelson space, II, preprint.
  16. A. Defant and M. Maestre, Holomorphic functions and (BB)-property on Fréchet -Montel spaces, Math. Proc. Cambridge Philos. Soc., to appear.
  17. J. C. Dí az and A. M. Miñarro, Distinguished Fréchet spaces and projective tensor products, Doǧa Mat. 14 (1990), 191-208.
  18. J. C. Dí az and A. M. Miñarro, On Fréchet Montel spaces and projective tensor products, Math. Proc. Cambridge Philos. Soc., to appear.
  19. S. Dineen, Complex Analysis on Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, 1981.
  20. S. Dineen, Holomorphic functions on Fréchet-Montel spaces, J. Math. Anal. Appl. 163 (1992), 581-587.
  21. S. Dineen, Quasinormable spaces of holomorphic functions, Note Mat., to appear.
  22. P. Galindo, D. García and M. Maestre, The coincidence of τ0 and τω for spaces of holomorphic functions on some Fréchet-Montel spaces, Proc. Roy. Irish Acad. 91A (1991), 137-143.
  23. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
  24. J. Horváth, Topological Vector Spaces and Distributions, Vol. 1, Addison-Wesley, Reading, Mass., 1966.
  25. H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.
  26. N. Kalton, Schauder decompositions in locally convex spaces, Proc. Cambridge Philos. Soc. 68 (1970), 377-392.
  27. P. Mazet, Analytic Sets in Locally Convex Spaces, North-Holland Math. Stud. 89, North-Holland, 1984.
  28. R. Meise, A remark on the ported and the compact-open topology for spaces of holomorphic functions on nuclear Fréchet spaces, Proc. Roy. Irish Acad. 81A (1981), 217-223.
  29. J. Mujica, A Banach-Dieudonné theorem for the space of germs of holomorphic functions, J. Funct. Anal. 57 (1984), 31-48.
  30. J. Mujica, Holomorphic approximation in infinite-dimensional Riemann domains, Studia Math. 82 (1985), 107-134.
  31. J. Mujica and L. Nachbin, Linearization of holomorphic mappings on locally convex spaces, J. Math. Pures Appl. 71 (1992), 543-560.
  32. A. Peris, Productos tensoriales de espacios localmente convexos casinormables y otras clases relacionadas, thesis, Universidad de Valencia, 1992.
  33. R. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, thesis, Trinity College Dublin, 1980.
  34. H. H. Schaefer, Topological Vector Spaces, 3rd printing corrected, Springer, 1971.
  35. J. Schmets, Espaces de fonctions continues, Lecture Notes in Math. 519, Springer, 1976.
  36. M. Schottenloher, τω=τ0 for domains in , in: Infinite Dimensional Holomorphy and Applications, M. Matos (ed.), North-Holland Math. Stud. 12, North-Holland, 1977, 393-395.
  37. J. Taskinen, Examples of non-distinguished Fréchet spaces, Ann. Acad. Sci. Fenn. Ser. AI Math. 14 (1989), 75-88.
  38. B. S. Tsirelson, Not every Banach space contains an imbedding of p or c0, Functional Anal. Appl. 8 (1974), 138-141.
Pages:
305-315
Main language of publication
English
Received
1992-12-21
Accepted
1993-04-27
Published
1993
Exact and natural sciences