It is shown that every uncountable symmetric basic set in an F-space with a symmetric basis is equivalent to a basic set generated by one vector. We apply this result to investigate the structure of uncountable symmetric basic sets in Orlicz and Lorentz spaces.
Dept. Mathematics & Informatics, Sofia University, 5, James Bourchier BLVD., 1126 Sofia, Bulgaria
Bibliografia
[ACL] Z. Altshuler, P. G. Casazza and B. L. Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15 (1973), 140-155.
[D₁] L. Drewnowski, On symmetric bases in nonseparable Banach spaces, Studia Math. 85 (1987), 157-161.
[D_2] L. Drewnowski, On uncountable unconditional bases in Banach spaces, ibid. 90 (1988), 191-196.
[K] N. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Cambridge Philos. Soc. 81 (1977), 253-277.
[KPR] N. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, London Math. Soc. Lecture Note Ser. 89, Cambridge University Press, 1984.
[LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977.
[M] V. D. Milman, Geometric theory of Banach spaces I. The theory of bases and minimal systems, Russian Math. Surveys 25 (1970), 111-170.
[P] N. Popa, Basic sequences and subspaces in Lorentz sequence spaces without local convexity, Trans. Amer. Math. Soc. 263 (1981), 431-456.
[R] B. Rodriguez-Salinas, Subspaces with symmetric basis in the Orlicz space $ℓ^F(I)$, preprint.
[Ro] S. Rolewicz, Metric Linear Spaces, 2nd ed., PWN-Reidel, Warszawa, 1984.
[T₁] S. Troyanski, On non-separable Banach spaces with a symmetric basis, Studia Math. 53 (1975), 253-263.
[T_2] S. Troyanski, On representation of uncountable symmetric basic sets, in: Proc. 5th Spring Conference of Math. and Math. Education (Gabrovo 1976), Sofia, 1990, 169-173 (in Russian).