ArticleOriginal scientific text
Title
Closed range multipliers and generalized inverses
Authors 1, 2
Affiliations
- Matematisk Institut, Københavns Universitet, 2100 Københavnø, Danmark
- Université de Lille I, 59655 Villeneuve d'Ascq Cedex, France
Abstract
Conditions involving closed range of multipliers on general Banach algebras are studied. Numerous conditions equivalent to a splitting A = TA ⊕ kerT are listed, for a multiplier T defined on the Banach algebra A. For instance, it is shown that TA ⊕ kerT = A if and only if there is a commuting operator S for which T = TST and S = STS, that this is the case if and only if such S may be taken to be a multiplier, and that these conditions are also equivalent to the existence of a factorization T = PB, where P is an idempotent and B an invertible multiplier. The latter condition establishes a connection to a famous problem of harmonic analysis.
Bibliography
- P. Aiena and K. B. Laursen, Multipliers with closed range on regular commutative Banach algebras, Proc. Amer. Math. Soc., to appear.
- F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973.
- R. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992), 71-77.
- H. Heuser, Functional Analysis, Wiley, New York, 1982.
- B. Host et F. Parreau, Sur un problème de I. Glicksberg: Les idéaux fermés de type fini de M(G), Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 143-164.
- T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322.
- R. Larsen, An Introduction to the Theory of Multipliers, Springer, Berlin, 1971.
- C. Rickart, General Theory of Banach Algebras, van Nostrand, Princeton, 1960.