ArticleOriginal scientific text

Title

Factorization of Montel operators

Authors 1, 2

Affiliations

  1. FB IV Mathematik, Universität Trier, W-5500 Trier, Germany
  2. Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

Abstract

Consider the following conditions. (a) Every regular LB-space is complete; (b) if an operator T between complete LB-spaces maps bounded sets into relatively compact sets, then T factorizes through a Montel LB-space; (c) for every complete LB-space E the space C (βℕ, E) is bornological. We show that (a) ⇒ (b) ⇒ (c). Moreover, we show that if E is Montel, then (c) holds. An example of an LB-space E with a strictly increasing transfinite sequence of its Mackey derivatives is given.

Keywords

Fréchet space, Fréchet-Montel space, complete LB-space, Montel LB-space, regular LB-space, Mackey completion of an LB-space, bornologicity of C(K,E)

Bibliography

  1. K. D. Bierstedt, An introduction to locally convex inductive limits, in: Functional Analysis and its Applications, World Sci., Singapore, 1988, 35-133.
  2. K. D. Bierstedt and J. Bonet, Stefan Heinrich's density condition for Fréchet spaces and the characterization of distinguished Köthe echelon spaces, Math. Nachr. 135 (1988), 149-180.
  3. K. D. Bierstedt and J. Bonet, Dual density conditions in (DF)-spaces, Results Math. 14 (1988), 242-274.
  4. J. Bonet, Sobre ciertos espacios de funciones continuas con valores vectoriales, Rev. Real Acad. Cienc. Madrid 75 (3) (1981), 757-767.
  5. J. Bonet and S. Dierolf, Fréchet spaces of Moscatelli type, Rev. Mat. Univ. Complutense Madrid 2 (1990), 77-92.
  6. J. Bonet and S. Dierolf, On (LB)-spaces of Moscatelli type, Doğa Mat. 13 (1990), 9-33.
  7. J. Bonet and J. Schmets, Examples of bornological C(X,E) spaces, ibid. 10 (1986), 83-90.
  8. J. Bonet and J. Schmets, Bornological spaces of type C(X)εE and C(X,E), Funct. Approx. Comment. Math. 17 (1987), 37-44.
  9. B. Cascales and J. Orihuela, Metrizability of precompact subsets in (LF)-spaces, Proc. Roy. Soc. Edinburgh 103A (1986), 293-299.
  10. B. Cascales and J. Orihuela, On compactness in locally convex spaces, Math. Z. 195 (1987), 365-381.
  11. W. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.
  12. J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
  13. S. Heinrich, Closed operator ideals and interpolation, J. Funct. Anal. 35 (1980), 397-411.
  14. H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.
  15. H. Junek, Locally Convex Spaces and Operator Ideals, Teubner, Leipzig, 1983.
  16. G. Köthe, Topological Vector Spaces, Springer, Berlin, 1969.
  17. V. B. Moscatelli, Fréchet spaces without continuous norm and without a basis, Bull. London Math. Soc. 12 (1980), 63-66.
  18. J. Mujica, A completeness criterion for inductive limits of Banach spaces, in: Functional Analysis, Holomorphy and Approximation Theory II, J. A. Barroso (ed.), North-Holland, Amsterdam, 1984, 319-329.
  19. H. Pfister, Bemerkungen zum Satz über die Separabilität der Fréchet-Montel Räume, Arch. Math. (Basel) 27 (1976), 86-92.
  20. J. Schmets, Spaces of Vector-Valued Continuous Functions, Lecture Notes in Math. 1003, Springer, Berlin, 1983.
  21. M. Valdivia, Semi-Suslin and dual metric spaces, in: Functional Analysis, Holomorphy and Approximation Theory, J. A. Barroso (ed.), North-Holland, Amsterdam, 1982, 445-459.
  22. S. Dierolf and P. Domański, Compact subsets of coechelon spaces, to appear.
  23. J. Bonet, P. Domański and J. Mujica, Complete spaces of vector-valued holomorphic germs, to appear.
Pages:
15-32
Main language of publication
English
Received
1992-08-21
Published
1993
Exact and natural sciences