ArticleOriginal scientific text
Title
Calderón couples of rearrangement invariant spaces
Authors 1
Affiliations
- Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211, U.S.A.
Abstract
We examine conditions under which a pair of rearrangement invariant function spaces on [0,1] or [0,∞) form a Calderón couple. A very general criterion is developed to determine whether such a pair is a Calderón couple, with numerous applications. We give, for example, a complete classification of those spaces X which form a Calderón couple with We specialize our results to Orlicz spaces and are able to give necessary and sufficient conditions on an Orlicz function F so that the pair forms a Calderón pair.
Bibliography
- J. Arazy and M. Cwikel, A new characterization of the interpolation spaces between
and , Math. Scand. 55 (1984), 253-270. - S. F. Bellenot, The Banach spaces of Maurey and Rosenthal and totally incomparable bases, J. Funct. Anal. 95 (1991), 96-105.
- S. F. Bellenot, R. Haydon and E. Odell, Quasi-reflexive and tree spaces constructed in the spirit of R. C. James, in: Contemp. Math. 85, Amer. Math. Soc., 1987, 19-43.
- C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York 1988.
- J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin 1976.
- N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge Univ. Press, 1987.
- Yu. Brudnyĭ and N. Kruglyak, Real interpolation functors, Soviet Math. Dokl. 23 (1981), 5-8.
- Yu. Brudnyĭ and N. Kruglyak, Interpolation Functors and Interpolation Spaces, North-Holland, 1991.
- A. P. Calderón, Spaces between
and and the theorems of Marcinkiewicz, Studia Math. 26 (1966), 273-299. - P. G. Casazza, W. B. Johnson and L. Tzafriri, On Tsirelson's space, Israel J. Math. 47 (1984), 81-98.
- P. G. Casazza and B. L. Lin, On symmetric basic sequences in Lorentz sequence spaces, II, ibid. 17 (1974), 191-218.
- P. G. Casazza and T. J. Shura, Tsirelson's space, Lecture Notes in Math. 1363, Springer, Berlin 1989.
- M. Cwikel, Monotonicity properties of interpolation spaces, Ark. Mat. 14 (1976), 213-236.
- M. Cwikel, Monotonicity properties of interpolation spaces II, ibid. 19 (1981), 123-136.
- M. Cwikel, K-divisibility of the K-functional and Calderón couples, ibid. 22 (1984), 39-62.
- M. Cwikel and P. Nilsson, On Calderón-Mityagin couples of Banach lattices, in: Proc. Conf. Constructive Theory of Functions, Varna 1984, Bulgarian Acad. Sci., 1984, 232-236.
- M. Cwikel and P. Nilsson, Interpolation of Marcinkiewicz spaces, Math. Scand. 56 (1985), 29-42.
- M. Cwikel and P. Nilsson, Interpolation of weighted Banach lattices, Mem. Amer. Math. Soc., to appear.
- G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, 1934.
- F. L. Hernandez and B. Rodriguez-Salinas, On
-complemented copies in Orlicz spaces II, Israel J. Math. 68 (1989), 27-55. - P. W. Jones, On interpolation between
and , in: Interpolation Spaces and Allied Topics in Analysis, Proc. Lund Conference 1983, M. Cwikel and J. Peetre (eds.), Lecture Notes in Math. 1070, Springer, 1984, 143-151. - J. L. Krivine, Sous espaces de dimension finie des espaces de Banach réticulés, Ann. of Math. 104 (1976), 1-29.
- J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel J. Math. 9 (1971), 263-269.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin 1977.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin 1979.
- G. G. Lorentz, Relations between function spaces, Proc. Amer. Math. Soc. 12 (1961), 127-132.
- G. G. Lorentz and T. Shimogaki, Interpolation theorems for the pairs of spaces
and , Trans. Amer. Math. Soc. 159 (1971), 207-222. - L. Maligranda, On Orlicz results in interpolation theory, in: Proc. Orlicz Memorial Conference, Univ. of Mississippi, 1990.
- L. Maligranda and V. I. Ovchinnikov, On interpolation between
and , J. Funct. Anal. 107 (1992), 342-351. - C. Merucci, Interpolation réelle avec fonction paramètre: réitération et applications aux espaces
, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 427-430. - C. Merucci, Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces, in: Interpolation Spaces and Allied Topics in Analysis, Proc. Lund Conference 1983, M. Cwikel and J. Peetre (eds.), Lecture Notes in Math. 1070, Springer, 1984, 183-201.
- B. S. Mityagin, An interpolation theorem for modular spaces, Mat. Sb. 66 (1965), 473-482 (in Russian).
- S. J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces, Studia Math. 103 (1992), 161-189.
- V. I. Ovchinnikov, On the estimates of interpolation orbits, Mat. Sb. 115 (1981), 642-652 (in Russian) (= Math. USSR-Sb. 43 (1982), 573-583).
- A. A. Sedaev and E. M. Semenov, On the possibility of describing interpolation spaces in terms of Peetre's K-method, Optimizatsiya 4 (1971), 98-114 (in Russian).
- G. Sparr, Interpolation of weighted
-spaces, Studia Math. 62 (1978), 229-271. - B. S. Tsirelson, Not every Banach space contains an embedding of
or , Functional Anal. Appl. 8 (1974), 138-141. - Q. Xu, Notes on interpolation of Hardy spaces, Ann. Inst. Fourier (Grenoble) 42 (1992), 877-889.
- M. Zippin, On perfectly homogeneous bases in Banach spaces, Israel J. Math. 4 (1966), 265-272.