ArticleOriginal scientific text

Title

Tf-splines et approximation par Tf -prolongement

Authors 1, 1

Affiliations

  1. Laboratoire Analyse Numérique, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse Cedex, France

Abstract

We study Tf-splines (existence, uniqueness and convergence) in Banach spaces with a view to applications in approximation. Our approach allows, in particular, considering some problems in a more regular domain, and hence facilitating their solution.

Bibliography

  1. M. Attéia, Convergence interne et externe des fonctions spline d'interpolation, Séminaire d'Analyse Numérique de Toulouse, 1975.
  2. P. G. Ciarlet, Élasticité tridimensionnelle, Masson, Paris 1986.
  3. J. Deny et J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1954), 305-370.
  4. J. Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, in: Lecture Notes in Math. 571, Springer, 1977, 85-100.
  5. I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels, Dunod, Paris 1974.
  6. P. J. Laurentet Pham-Dinh-Tuan, Global approximation of a compact set by elements of a convex set in a normed space, Numer. Math. 15 (1970), 137-150.
  7. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Hermann, Paris 1972.
  8. D. V. Pai, On nonlinear minimization problems and Lf-splines, I, J. Approx. Theory 39 (1983), 228-235.
Pages:
203-211
Main language of publication
French
Published
1993
Exact and natural sciences