ArticleOriginal scientific text

Title

Properly semi-L-embedded complex spaces

Authors 1

Affiliations

  1. Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Abstract

We prove the existence of complex Banach spaces X such that every element F in the bidual X** of X has a unique best approximation π(F) in X, the equality ∥F∥ = ∥π (F)∥ + ∥F - π (F)∥ holds for all F in X**, but the mapping π is not linear.

Bibliography

  1. C. Aparicio, F. Ocaña, R. Payá and A. Rodríguez, A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges, Glasgow Math. J. 28 (1986), 121-137.
  2. T. J. Barton and R. M. Timoney, Weak* continuity of Jordan triple products and applications, Math. Scand. 59 (1986), 177-191.
  3. E. Behrends, Points of symmetry of convex sets in the two-dimensional complex space. A counterexample to D. Yost's problem, Math. Ann. 290 (1991), 463-471.
  4. E. Behrends and P. Harmand, Banach spaces which are proper M-ideals, Studia Math. 81 (1985), 159-169.
  5. P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1983), 253-264.
  6. P. Harmand and T. S. S. R. K. Rao, An intersection property of balls and relations with M-ideals, Math. Z. 197 (1988), 277-290.
  7. P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math., Springer, to appear.
  8. Å. Lima, Intersection properties of balls and subspaces of Banach spaces, Trans. Amer. Math. Soc. 229 (1977), 1-62.
  9. J. Martínez, J. F. Mena, R. Payá and A. Rodríguez, An approach to numerical ranges without Banach algebra theory, Illinois J. Math. 29 (1985), 609-626.
  10. J. F. Mena, R. Payá and A. Rodríguez, Absolute subspaces of Banach spaces, Quart. J. Math. Oxford 40 (1989), 43-64.
  11. R. Payá and A. Rodríguez, Banach spaces which are semi-M-summands in their biduals, Math. Ann. 289 (1991), 529-542.
  12. D. Yost, Semi-M-ideals in complex Banach spaces, Rev. Roumaine Math. Pures Appl. 29 (1984), 619-623.
Pages:
197-202
Main language of publication
English
Received
1992-11-17
Accepted
1993-02-21
Published
1993
Exact and natural sciences