ArticleOriginal scientific text

Title

Topological tensor products of a Fréchet-Schwartz space and a Banach space

Authors 1

Affiliations

  1. Departamento de Matemática, Aplicada Universidad Politécnica de Valencia, E.T.S. Arquitectura, E-46071 Valencia, Spain

Abstract

We exhibit examples of countable injective inductive limits E of Banach spaces with compact linking maps (i.e. (DFS)-spaces) such that EεX is not an inductive limit of normed spaces for some Banach space X. This solves in the negative open questions of Bierstedt, Meise and Hollstein. As a consequence we obtain Fréchet-Schwartz spaces F and Banach spaces X such that the problem of topologies of Grothendieck has a negative answer for FπX. This solves in the negative a question of Taskinen. We also give examples of Fréchet-Schwartz spaces and (DFS)-spaces without the compact approximation property and with the compact approximation property but without the approximation property.

Keywords

Fréchet-Schwartz spaces, (DFS)-spaces, topological tensor products, approximation property, compact approximation property

Bibliography

  1. K. D. Bierstedt, J. Bonet and A. Galbis, Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J., to appear.
  2. K. D. Bierstedt, J. Bonet and A. Peris, Vector-valued holomorphic germs on Fréchet-Schwartz spaces, Proc. Roy. Irish Acad., to appear.
  3. K. D. Bierstedt und R. Meise, Induktive Limiten gewichteter Räume stetiger und holomorpher Funktionen, J. Reine Angew. Math. 282 (1976), 186-220.
  4. J. Bonet and J. C. Díaz, The problem of topologies of Grothendieck and the class of Fréchet T-spaces, Math. Nachr. 150 (1991), 109-118.
  5. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), reprint 1966.
  6. R. Hollstein, Tensor sequences and inductive limits with local partition of unity, Manuscripta Math. 52 (1985), 227-249.
  7. H. Jarchow, Locally Convex Spaces, Math. Leitfäden, B. G. Teubner, Stuttgart 1981.
  8. W. B. Johnson, Factoring compact operators, Israel J. Math. 9 (1971), 337-345.
  9. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin 1979.
  10. P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, North-Holland Math. Stud. 131, North-Holland, Amsterdam 1987.
  11. A. Peris, Quasinormable spaces and the problem of topologies of Grothendieck, Ann. Acad. Sci. Fenn. Ser. AI Math., to appear.
  12. J. Taskinen, Counterexamples to "Problème des topologies" of Grothendieck, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 63 (1986).
  13. J. Taskinen, (FBa)- and (FBB)-spaces, Math. Z. 198 (1988), 339-365.
  14. J. Taskinen, The projective tensor product of Fréchet-Montel spaces, Studia Math. 91 (1988), 17-30.
  15. G. Willis, The Compact Approximation Property does not imply the Approximation Property, ibid. 103 (1992), 99-108.
Pages:
189-196
Main language of publication
English
Received
1992-10-29
Published
1993
Exact and natural sciences