ArticleOriginal scientific text
Title
Topological tensor products of a Fréchet-Schwartz space and a Banach space
Authors 1
Affiliations
- Departamento de Matemática, Aplicada Universidad Politécnica de Valencia, E.T.S. Arquitectura, E-46071 Valencia, Spain
Abstract
We exhibit examples of countable injective inductive limits E of Banach spaces with compact linking maps (i.e. (DFS)-spaces) such that is not an inductive limit of normed spaces for some Banach space X. This solves in the negative open questions of Bierstedt, Meise and Hollstein. As a consequence we obtain Fréchet-Schwartz spaces F and Banach spaces X such that the problem of topologies of Grothendieck has a negative answer for . This solves in the negative a question of Taskinen. We also give examples of Fréchet-Schwartz spaces and (DFS)-spaces without the compact approximation property and with the compact approximation property but without the approximation property.
Keywords
Fréchet-Schwartz spaces, (DFS)-spaces, topological tensor products, approximation property, compact approximation property
Bibliography
- K. D. Bierstedt, J. Bonet and A. Galbis, Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J., to appear.
- K. D. Bierstedt, J. Bonet and A. Peris, Vector-valued holomorphic germs on Fréchet-Schwartz spaces, Proc. Roy. Irish Acad., to appear.
- K. D. Bierstedt und R. Meise, Induktive Limiten gewichteter Räume stetiger und holomorpher Funktionen, J. Reine Angew. Math. 282 (1976), 186-220.
- J. Bonet and J. C. Díaz, The problem of topologies of Grothendieck and the class of Fréchet T-spaces, Math. Nachr. 150 (1991), 109-118.
- A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), reprint 1966.
- R. Hollstein, Tensor sequences and inductive limits with local partition of unity, Manuscripta Math. 52 (1985), 227-249.
- H. Jarchow, Locally Convex Spaces, Math. Leitfäden, B. G. Teubner, Stuttgart 1981.
- W. B. Johnson, Factoring compact operators, Israel J. Math. 9 (1971), 337-345.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin 1979.
- P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, North-Holland Math. Stud. 131, North-Holland, Amsterdam 1987.
- A. Peris, Quasinormable spaces and the problem of topologies of Grothendieck, Ann. Acad. Sci. Fenn. Ser. AI Math., to appear.
- J. Taskinen, Counterexamples to "Problème des topologies" of Grothendieck, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 63 (1986).
- J. Taskinen, (FBa)- and (FBB)-spaces, Math. Z. 198 (1988), 339-365.
- J. Taskinen, The projective tensor product of Fréchet-Montel spaces, Studia Math. 91 (1988), 17-30.
- G. Willis, The Compact Approximation Property does not imply the Approximation Property, ibid. 103 (1992), 99-108.