ArticleOriginal scientific text

Title

On continuity properties of functions with conditions on the mean oscillation

Authors 1, 2

Affiliations

  1. Programa Especial de Matemática Aplicada, Intec-Conicet, cc N° 91, 3000 Santa Fe, Argentina.
  2. Departamento de Matemática, Facultad de Ingeniería Química, UNL, Santiago del Estero 2829, 3000 Santa Fe, Argentina.

Abstract

In this paper we study distribution and continuity properties of functions satisfying a vanishing mean oscillation property with a lag mapping on a space of homogeneous type.

Bibliography

  1. [A1] H. Aimar, Rearrangement and continuity properties of BMO (ϕ) functions on spaces of homogeneous type, Ann. Scuola Norm. Sup. Pisa, to appear.
  2. [A2] H. Aimar, Elliptic and parabolic BMO and Harnack's inequality, Trans. Amer. Math. Soc. 306 (1988), 265-276.
  3. [B] N. Burger, Espace des fonctions à moyenne bornée sur un espace de nature homogène, C. R. Acad. Sci. Paris Sér. A 286 (1978), 139-142.
  4. [C] S. Campanato, Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa 17 (1963), 175-188.
  5. [CS] F. Chiarenza and R. Serapioni, A Harnack inequality for degenerate parabolic equations, Comm. Partial Differential Equations 9 (1984), 719-749.
  6. [CW] R. Coifman et R. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin 1972.
  7. [FG] E. Fabes and N. Garofalo, Parabolic BMO and Harnack's inequality, Proc. Amer. Math. Soc. 95 (1985), 63-69.
  8. [JN] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.
  9. [Me] G. Meyers, Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc. 15 (1964), 717-724.
  10. [M1] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591.
  11. [M2] J. Moser, A Harnack inequality for parabolic differential equations, ibid. 17 (1964), 101-134; Correction, ibid. 20 (1967), 232-236.
  12. [MS] R. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), 257-270.
  13. [MT] F. Martín-Reyes and A. de la Torre, preprint.
  14. [N] U. Neri, Some properties of functions with bounded mean oscillation, Studia Math. 61 (1977), 63-75.
  15. [S] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa 19 (1965), 593-608.
Pages:
139-151
Main language of publication
English
Received
1992-04-09
Accepted
1992-12-07
Published
1993
Exact and natural sciences