ArticleOriginal scientific text

Title

A multidimensional Lyapunov type theorem

Authors 1

Affiliations

  1. S.I.S.S.A., Via Beirut 4, Trieste 34014, Italy

Abstract

Given functions f1,...,fν1(n;m), weights p1,...,pν:n[0,1] with pi1, and any finite set of vectors v1,...,vkn{0}, we prove the existence of a partition {A1,...,Aν} of n such that the two functions fp=i=1νpifi,f_A = ∑_{i=1}^ν χ_{A_i}f_ihavethesameegral¬onlyoverℝ^n,butalsoovereverysinglex' + ℝv_j,foreachj=1,...,kandalmosteveryxtheorthogonalhyperplav_j^⊥.Equivantly,theFouriertranormsoff_p,f_Asatiyf̂_p(y) = f̂_A(y)foreveryy ∈ ⋃ v_j^⊥!$!.

Bibliography

  1. Z. Artstein, Yet another proof of the Lyapunov convexity theorem, Proc. Amer. Math. Soc. 108 (1990), 89-91.
  2. J. P. Aubin and A. Cellina, Differential Inclusions, Springer, New York 1984.
  3. A. Bressan and F. Flores, Multivalued Aumann integrals and controlled wave equations, preprint S.I.S.S.A., Trieste 1992.
  4. L. Cesari, Optimization. Theory and Applications, Springer, New York 1983.
  5. P. R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948), 416-421.
  6. J. Lindenstrauss, A short proof of Liapounoff's convexity theorem, J. Math. Mech. 15 (1966), 971-972.
  7. A. A. Lyapunov, On completely additive vector-valued functions, Izv. Akad. Nauk SSSR Ser. Mat. 8 (1940), 465-478 (in Russian; French summary).
  8. C. Olech, The Lyapunov theorem: its extensions and applications, in: Methods of Nonconvex Analysis, A. Cellina (ed.), Lecture Notes in Math. 1446, Springer, 1989, 84-103.
  9. J. A. Yorke, Another proof of the Liapunov convexity theorem, SIAM J. Control 9 (1971), 351-353.
Pages:
121-128
Main language of publication
English
Received
1992-02-26
Accepted
1993-02-01
Published
1993
Exact and natural sciences