ArticleOriginal scientific text
Title
A multidimensional Lyapunov type theorem
Authors 1
Affiliations
- S.I.S.S.A., Via Beirut 4, Trieste 34014, Italy
Abstract
Given functions , weights with , and any finite set of vectors , we prove the existence of a partition of such that the two functions
f_A = ∑_{i=1}^ν χ_{A_i}f_i ℝ^n x' + ℝv_j v_j^⊥ f_p f_A f̂_p(y) = f̂_A(y) y ∈ ⋃ v_j^⊥!$!.
Bibliography
- Z. Artstein, Yet another proof of the Lyapunov convexity theorem, Proc. Amer. Math. Soc. 108 (1990), 89-91.
- J. P. Aubin and A. Cellina, Differential Inclusions, Springer, New York 1984.
- A. Bressan and F. Flores, Multivalued Aumann integrals and controlled wave equations, preprint S.I.S.S.A., Trieste 1992.
- L. Cesari, Optimization. Theory and Applications, Springer, New York 1983.
- P. R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948), 416-421.
- J. Lindenstrauss, A short proof of Liapounoff's convexity theorem, J. Math. Mech. 15 (1966), 971-972.
- A. A. Lyapunov, On completely additive vector-valued functions, Izv. Akad. Nauk SSSR Ser. Mat. 8 (1940), 465-478 (in Russian; French summary).
- C. Olech, The Lyapunov theorem: its extensions and applications, in: Methods of Nonconvex Analysis, A. Cellina (ed.), Lecture Notes in Math. 1446, Springer, 1989, 84-103.
- J. A. Yorke, Another proof of the Liapunov convexity theorem, SIAM J. Control 9 (1971), 351-353.