ArticleOriginal scientific text

Title

Balancing vectors and convex bodies

Authors 1

Affiliations

  1. Institute of Mathematics, Łódź University, 90-238 Łódź, Poland

Abstract

Let U, V be two symmetric convex bodies in n and |U|, |V| their n-dimensional volumes. It is proved that there exist vectors u1,...,unU such that, for each choice of signs ε1,...,εn=±1, one has ε1u1+...+εnunrV where r=(2πe2)-12n12(|U||V|)1n. Hence it is deduced that if a metrizable locally convex space is not nuclear, then it contains a null sequence (un) such that the series n=1εnuπ(n) is divergent for any choice of signs εn=±1 and any permutation π of indices.

Keywords

balancing vectors, Steinitz constant

Bibliography

  1. I. K. Babenko, Asymptotic volume of tori and geometry of convex bodies, Mat. Zametki 44 (1988), 177-190 (in Russian).
  2. K. Ball, Volumes of sections of cubes and related problems, in: Geometric Aspects of Functional Analysis, Israel Seminar (GAFA) 1987-88, Lecture Notes in Math. 1376, Springer, Berlin 1989, 251-260.
  3. W. Banaszczyk, The Steinitz theorem on rearrangement of series for nuclear spaces, J. Reine Angew. Math. 403 (1990), 187-200.
  4. W. Banaszczyk, A Beck-Fiala-type theorem for euclidean norms, Europ. J. Combin. 11 (1990), 497-500.
  5. W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Lecture Notes in Math. 1466, Springer, Berlin 1991.
  6. J. Beck and T. Fiala, Integer-making theorems, Discrete Appl. Math. 3 (1981), 1-8.
  7. J. Beck and J. Spencer, Integral approximation sequences, Math. Programming 30 (1984), 88-98.
  8. J. Bourgain and S. J. Szarek, The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization, Israel J. Math. 62 (1988), 169-180.
  9. J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer, Berlin 1959.
  10. A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192-197.
  11. V. S. Grinberg and S. V. Sevastyanov, Value of the Steinitz constant, Funktsional. Anal. i Prilozhen. 14 (2) (1980), 56-57 (in Russian); English transl.: Functional Anal. Appl. 14 (1980), 125-126.
  12. B. S. Kashin, On parallelepipeds of minimal volume containing a convex body, Mat. Zametki 45 (1989), 134-135 (in Russian).
  13. A. Pełczyński and S. J. Szarek, On parallelepipeds of minimal volume containing a convex symmetric body in n, Math. Proc. Cambridge Philos. Soc. 109 (1991), 125-148.
  14. S. Sevastyanov, Geometry in the scheduling theory, in: Models and Methods of Optimization, Trudy Inst. Mat. 10, Nauka, Sibirsk. Otdel., Novosibirsk 1988, 226-261 (in Russian).
  15. J. Spencer, Six standard deviations suffice, Trans. Amer. Math. Soc. 289 (1985), 679-706.
  16. J. Spencer, Balancing vectors in the max norm, Combinatorica 6 (1986), 55-65.
  17. J. Spencer, Ten Lectures on the Probabilistic Method, Society for Industrial and Applied Mathematics, Philadelphia, Penn. 1987.
Pages:
93-100
Main language of publication
English
Received
1992-09-30
Accepted
1993-02-23
Published
1993
Exact and natural sciences