ArticleOriginal scientific text
Title
Balancing vectors and convex bodies
Authors 1
Affiliations
- Institute of Mathematics, Łódź University, 90-238 Łódź, Poland
Abstract
Let U, V be two symmetric convex bodies in and |U|, |V| their n-dimensional volumes. It is proved that there exist vectors such that, for each choice of signs , one has where . Hence it is deduced that if a metrizable locally convex space is not nuclear, then it contains a null sequence such that the series is divergent for any choice of signs and any permutation π of indices.
Keywords
balancing vectors, Steinitz constant
Bibliography
- I. K. Babenko, Asymptotic volume of tori and geometry of convex bodies, Mat. Zametki 44 (1988), 177-190 (in Russian).
- K. Ball, Volumes of sections of cubes and related problems, in: Geometric Aspects of Functional Analysis, Israel Seminar (GAFA) 1987-88, Lecture Notes in Math. 1376, Springer, Berlin 1989, 251-260.
- W. Banaszczyk, The Steinitz theorem on rearrangement of series for nuclear spaces, J. Reine Angew. Math. 403 (1990), 187-200.
- W. Banaszczyk, A Beck-Fiala-type theorem for euclidean norms, Europ. J. Combin. 11 (1990), 497-500.
- W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Lecture Notes in Math. 1466, Springer, Berlin 1991.
- J. Beck and T. Fiala, Integer-making theorems, Discrete Appl. Math. 3 (1981), 1-8.
- J. Beck and J. Spencer, Integral approximation sequences, Math. Programming 30 (1984), 88-98.
- J. Bourgain and S. J. Szarek, The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization, Israel J. Math. 62 (1988), 169-180.
- J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer, Berlin 1959.
- A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192-197.
- V. S. Grinberg and S. V. Sevastyanov, Value of the Steinitz constant, Funktsional. Anal. i Prilozhen. 14 (2) (1980), 56-57 (in Russian); English transl.: Functional Anal. Appl. 14 (1980), 125-126.
- B. S. Kashin, On parallelepipeds of minimal volume containing a convex body, Mat. Zametki 45 (1989), 134-135 (in Russian).
- A. Pełczyński and S. J. Szarek, On parallelepipeds of minimal volume containing a convex symmetric body in
, Math. Proc. Cambridge Philos. Soc. 109 (1991), 125-148. - S. Sevastyanov, Geometry in the scheduling theory, in: Models and Methods of Optimization, Trudy Inst. Mat. 10, Nauka, Sibirsk. Otdel., Novosibirsk 1988, 226-261 (in Russian).
- J. Spencer, Six standard deviations suffice, Trans. Amer. Math. Soc. 289 (1985), 679-706.
- J. Spencer, Balancing vectors in the max norm, Combinatorica 6 (1986), 55-65.
- J. Spencer, Ten Lectures on the Probabilistic Method, Society for Industrial and Applied Mathematics, Philadelphia, Penn. 1987.