ArticleOriginal scientific textNonconvolution transforms with oscillating kernels that map
Title
Nonconvolution transforms with oscillating kernels that map into itself
Authors 1
Affiliations
- Mathematics Department, Auburn University, Auburn, Alabama 36849-5201, U.S.A.
Abstract
We consider operators of the form
with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space (= B) into itself. In particular, all operators with , a > 0, a ≠ 1, map B into itself.
Bibliography
- S. Chanillo and M. Christ, Weak (1,1) bounds for oscillating singular integrals, Duke Math. J. 55 (1987), 141-155.
- S. Chanillo and M. Christ, Weak
and Mischa Cotlar, preprint, 1985. - S. Chanillo, D. S. Kurtz and G. Sampson, Weighted weak (1,1) estimates and weighted
estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. - R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397.
- G. S. De Souza, Spaces formed by special atoms, Ph.D. dissertation, S.U.N.Y. at Albany, 1980.
- G. S. De Souza and A. Gulisashvili, Special atom decompositions of Besov spaces on fractal sets, preprint, 1990.
- G. S. De Souza and G. Sampson, A real characterization of the pre-dual of Bloch functions, J. London Math. Soc. (2) 27 (1983), 267-276.
- M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., 1991.
- Y. -S. Han and S. Hofmann, T1 theorems for Besov and Triebel-Lizorkin spaces, Trans. Amer. Math. Soc., to appear.
- Y.-S. Han, B. Jawerth, M. Taibleson and G. Weiss, Littlewood-Paley theory and ε-families of operators, Colloq. Math. 60/61 (1) (1990), 321-359.
- W. B. Jurkat and G. Sampson, The complete solution to the
mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413. - M. Meyer, Continuité Besov de certains opérateurs intégraux singuliers, Ark. Mat. 27 (1989), 305-318.
- Y. Meyer, La minimalité de l'espace de Besov
et la continuité des opérateurs définis par des intégrales singulières, Monografías de Matemáticas 4, Univ. Autónoma de Madrid, 1986. - M. Reyes, An analytic study of the functions defined on the self-similar fractals, preprint, 1990.
- F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, 1. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194.
- G. Sampson, Oscillating kernels that map
into , Ark. Mat. 18 (1980), 125-144. - G. Sampson, On classes of real analytic families of singular integrals on
and , J. London Math. Soc. (2) 23 (1981), 433-441. - G. Sampson,
and weighted estimates for convolutions with singular and oscillating kernels, ibid. 43 (1991), 465-484. - G. Sampson, Operators mapping
into and operators mapping into , preprint, 1991. - P. Sjölin, Convolution with oscillating kernels, Indiana Univ. Math. J. 30 (1981), 47-56.