ArticleOriginal scientific text

Title

Nonconvolution transforms with oscillating kernels that map 10,1 into itself

Authors 1

Affiliations

  1. Mathematics Department, Auburn University, Auburn, Alabama 36849-5201, U.S.A.

Abstract

We consider operators of the form (Ωf)(y)=ʃ-Ω(y,u)f(u)du with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and hL (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space 0,1_1 (= B) into itself. In particular, all operators with h(y)=ei|y|a, a > 0, a ≠ 1, map B into itself.

Bibliography

  1. S. Chanillo and M. Christ, Weak (1,1) bounds for oscillating singular integrals, Duke Math. J. 55 (1987), 141-155.
  2. S. Chanillo and M. Christ, Weak L1 and Mischa Cotlar, preprint, 1985.
  3. S. Chanillo, D. S. Kurtz and G. Sampson, Weighted weak (1,1) estimates and weighted Lp estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145.
  4. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
  5. G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397.
  6. G. S. De Souza, Spaces formed by special atoms, Ph.D. dissertation, S.U.N.Y. at Albany, 1980.
  7. G. S. De Souza and A. Gulisashvili, Special atom decompositions of Besov spaces on fractal sets, preprint, 1990.
  8. G. S. De Souza and G. Sampson, A real characterization of the pre-dual of Bloch functions, J. London Math. Soc. (2) 27 (1983), 267-276.
  9. M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., 1991.
  10. Y. -S. Han and S. Hofmann, T1 theorems for Besov and Triebel-Lizorkin spaces, Trans. Amer. Math. Soc., to appear.
  11. Y.-S. Han, B. Jawerth, M. Taibleson and G. Weiss, Littlewood-Paley theory and ε-families of operators, Colloq. Math. 60/61 (1) (1990), 321-359.
  12. W. B. Jurkat and G. Sampson, The complete solution to the (Lp,Lq) mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413.
  13. M. Meyer, Continuité Besov de certains opérateurs intégraux singuliers, Ark. Mat. 27 (1989), 305-318.
  14. Y. Meyer, La minimalité de l'espace de Besov 10,1 et la continuité des opérateurs définis par des intégrales singulières, Monografías de Matemáticas 4, Univ. Autónoma de Madrid, 1986.
  15. M. Reyes, An analytic study of the functions defined on the self-similar fractals, preprint, 1990.
  16. F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, 1. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194.
  17. G. Sampson, Oscillating kernels that map H1 into L1, Ark. Mat. 18 (1980), 125-144.
  18. G. Sampson, On classes of real analytic families of singular integrals on H1 and Lp, J. London Math. Soc. (2) 23 (1981), 433-441.
  19. G. Sampson, Hp and L2 weighted estimates for convolutions with singular and oscillating kernels, ibid. 43 (1991), 465-484.
  20. G. Sampson, Operators mapping 10,1 into 10,1 and operators mapping L2 into L2, preprint, 1991.
  21. P. Sjölin, Convolution with oscillating kernels, Indiana Univ. Math. J. 30 (1981), 47-56.
Pages:
1-44
Main language of publication
English
Received
1992-02-06
Published
1993
Exact and natural sciences