ArticleOriginal scientific text
Title
Disjointness results for some classes of stable processes
Authors 1, 2
Affiliations
- Department of Mathematics, University of Maryland, College Park, Maryland 20742, U.S.A.
- Department of Statistics, Stanford University, Stanford, California 94305, U.S.A.
Abstract
We discuss the disjointness of two classes of stable stochastic processes: moving averages and Fourier transforms. Results on the incompatibility of these two representations date back to Urbanik. Here we extend various disjointness results to encompass larger classes of processes.
Bibliography
- J. Benedetto and H. Heinig, Weighted Hardy spaces and the Laplace transform, in: Lecture Notes in Math. 992, Springer, 1983, 240-277.
- S. Cambanis and C. Houdré, Stable processes: moving averages versus Fourier transforms, Probab. Theory Related Fields 95 (1993), 75-85.
- S. Cambanis and R. Soltani, Prediction of stable processes: spectral and moving average representations, Z. Warhrsch. Verw. Gebiete 66 (1984), 593-612.
- N. Dunford and J. Schwartz, Linear Operators, Part I: General Theory, Wiley Interscience, New York 1957.
- R. Edwards and G. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, Berlin 1977.
- C. Houdré, Harmonizability, V-boundedness, (2,p)-boundedness of stochastic processes, Probab. Theory Related Fields 84 (1990), 39-54.
- C. Houdré, Linear and Fourier stochastic analysis, ibid. 87 (1990), 167-188.
- R. Johnson, Recent results on weighted inequalities for the Fourier transform, in: Seminar Analysis of the Karl-Weierstraß-Institute 1986/87, Teubner-Texte Math. 106, B. Schulze and H. Triebel (eds.), Teubner, Leipzig 1988, 287-296.
- W. Jurkat and G. Sampson, On rearrangement and weight inequalities for the Fourier transform, Indiana Univ. Math. J. 33 (1984), 257-270.
- J. Lakey, Weighted norm inequalities for the Fourier transform, Ph.D. Thesis, University of Maryland, College Park, 1991.
- A. Makagon and V. Mandrekar, The spectral representation of stable processes: harmonizability and regularity, Probab. Theory Related Fields 85 (1990), 1-11.
- B. Rajput and J. Rosinski, Spectral representations of infinitely divisible processes, ibid. 82 (1989), 451-487.
- J. Rosinski, On stochastic integral representation of stable processes with sample paths in Banach spaces, J. Multivariate Anal. 20 (1986), 277-307.
- G. Samorodnitsky and M. Taqqu, Stable Random Processes, book to appear.
- K. Urbanik, Prediction of strictly stationary sequences, Colloq. Math. 12 (1964), 115-129.
- K. Urbanik, Some prediction problems for strictly stationary processes, in: Proc. 5th Berkeley Sympos. Math. Statist. Probab., Vol. 2, Part I, Univ. of California Press, 1967, 235-258.
- K. Urbanik, Random measures and harmonizable sequences, Studia Math. 31 (1968), 61-88.