ArticleOriginal scientific text

Title

An example of a generalized completely continuous representation of a locally compact group

Authors 1

Affiliations

  1. Universität Bielefeld, Fakultät Für Mathematik, Postfach 100131, W-4800 Bielefeld, Germany.

Abstract

There is constructed a compactly generated, separable, locally compact group G and a continuous irreducible unitary representation π of G such that the image π(C*(G)) of the group C*-algebra contains the algebra of compact operators, while the image π(L1(G)) of the L1-group algebra does not containany nonzero compact operator. The group G is a semidirect product of a metabelian discrete group and a "generalized Heisenberg group".

Bibliography

  1. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris 1969.
  2. Ph. Green, The structure of imprimitivity algebras, J. Funct. Anal. 36 (1980), 88-104.
  3. A. Guichardet, Caractères des algèbres de Banach involutives, Ann. Inst. Fourier (Grenoble) 13 (1963), 1-81.
  4. H. Leptin, Verallgemeinerte L1-Algebren und projektive Darstellungen lokal kompakter Gruppen, Invent. Math. 3 (1967), 257-281, 4 (1967), 68-86.
  5. H. Leptin and D. Poguntke, Symmetry and nonsymmetry for locally compact groups, J. Funct. Anal. 33 (1979), 119-134.
  6. D. Poguntke, Unitary representations of Lie groups and operators of finite rank, Ann. of Math., to appear.
  7. H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Clarendon, Oxford 1968.
Pages:
189-205
Main language of publication
English
Received
1992-12-18
Published
1993
Exact and natural sciences