ArticleOriginal scientific text

Title

Construction de p-multiplicateurs

Authors 1

Affiliations

  1. Institut de Mathématiques, Université de Lausanne, CH-1015 Lausanne, Suisse

Abstract

Using characteristic functions of polyhedra, we construct radial p-multipliers which are continuous over n but not continuously differentiable through Sn-1 and give a p-multiplier criterion for homogeneous functions over 2. We also exhibit fractal p-multipliers over the real line.

Bibliography

  1. [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, Berlin 1977.
  2. [Fa] K. Falconer, Fractal Geometry, Wiley, Chichester 1990.
  3. [Fe] C. Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330-336.
  4. [H] L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta Math. 104 (1960), 94-140.
  5. [L] R. Larsen, An Introduction to the Theory of Multipliers, Springer, New York 1971.
  6. [dL] K. de Leeuw, On Lp multipliers, Ann. of Math. 81 (1965), 364-379.
  7. [Ł] S. Łojasiewicz, An Introduction to the Theory of Real Functions, Wiley, Chichester 1988.
  8. [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
Pages:
135-142
Main language of publication
French
Received
1992-04-07
Published
1993
Exact and natural sciences