ArticleOriginal scientific text
Title
Construction de p-multiplicateurs
Authors 1
Affiliations
- Institut de Mathématiques, Université de Lausanne, CH-1015 Lausanne, Suisse
Abstract
Using characteristic functions of polyhedra, we construct radial p-multipliers which are continuous over but not continuously differentiable through and give a p-multiplier criterion for homogeneous functions over . We also exhibit fractal p-multipliers over the real line.
Bibliography
- [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, Berlin 1977.
- [Fa] K. Falconer, Fractal Geometry, Wiley, Chichester 1990.
- [Fe] C. Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330-336.
- [H] L. Hörmander, Estimates for translation invariant operators in
spaces, Acta Math. 104 (1960), 94-140. - [L] R. Larsen, An Introduction to the Theory of Multipliers, Springer, New York 1971.
- [dL] K. de Leeuw, On
multipliers, Ann. of Math. 81 (1965), 364-379. - [Ł] S. Łojasiewicz, An Introduction to the Theory of Real Functions, Wiley, Chichester 1988.
- [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.