ArticleOriginal scientific text
Title
Transference and restriction of maximal multiplier operators on Hardy spaces
Authors 1, 2
Affiliations
- Department of Applied Mathematics, Tsinghua University, Beijing, 100084, China
- Department of Mathematics, Beijing Normal University, Beijing, 100875, China
Abstract
The aim of this paper is to establish transference and restriction theorems for maximal operators defined by multipliers on the Hardy spaces and , 0 < p ≤ 1, which generalize the results of Kenig-Tomas for the case p > 1. We prove that under a mild regulation condition, an function m is a maximal multiplier on if and only if it is a maximal multiplier on . As an application, the restriction of maximal multipliers to lower dimensional Hardy spaces is considered.
Bibliography
- E. Berkson, T. A. Gillespie and P. S. Muhly,
-Multiplier transference induced by representations in Hilbert space, Studia Math. 94 (1989), 51-61. - R. R. Coifman and G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., Providence, R.I., 1977.
- C. Fefferman and E. M. Stein,
spaces of several variables, Acta Math. 129 (1972), 137-193. - M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799.
- C. E. Kenig and P. A. Tomas, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), 79-83.
- K. de Leeuw, On
multipliers, Ann. of Math. 81 (1965), 364-379. - Z. X. Liu, Multipliers on real Hardy spaces, Scientia in China (Ser. A) 35 (1992), 55-69.
- C. Meaney, Transferring estimates for zonal convolution operators, Anal. Math. 15 (1989), 175-193.
- A. Miyachi, On some Fourier multipliers for
, J. Fac. Sci. Tokyo Sect. IA 27 (1980), 157-179. - M. Plancherel et G. Pólya, Fonctions entières intégrales de Fourier multiples, Comment. Math. Helv. 9 (1937), 224-248.
- F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals II. Singular kernels supported on submanifolds, J. Funct. Anal. 78 (1988), 56-84.
- M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 68-149.