PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1993 | 105 | 1 | 69-75
Tytuł artykułu

The Słodkowski spectra and higher Shilov boundaries

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate relations between the spectra defined by Słodkowski [14] and higher Shilov boundaries of the Taylor spectrum. The results generalize the well-known relation between the approximate point spectrum and the usual Shilov boundary.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
105
Numer
1
Strony
69-75
Opis fizyczny
Daty
wydano
1993
otrzymano
1992-04-16
Twórcy
  • Institute of Mathematics, Czechoslovak Academy of Sciences, Žitná 25, 115 67 Praha 1, Czechoslovakia
Bibliografia
  • [1] E. Albrecht and F.-H. Vasilescu, Stability of the index of a semi-Fredholm complex of Banach spaces, J. Funct. Anal. 66 (1986), 141-172.
  • [2] R. Basener, A generalized Shilov boundary and analytic structure, Proc. Amer. Math. Soc. 47 (1975), 98-104.
  • [3] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973.
  • [4] J. J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977), 309-314.
  • [5] M. Chō and M. Takaguchi, Boundary of Taylor's joint spectrum for two commuting operators, Sci. Rep. Hirosaki Univ. 28 (1981), 1-4.
  • [6] G. Corach and F. D. Suárez, Generalized rational convexity in Banach algebras, Pacific J. Math. 140 (1989), 35-51.
  • [7] R. E. Curto, Connections between Harte and Taylor spectrum, Rev. Roumaine Math. Pures Appl. 31 (1986), 203-215.
  • [8] A. S. Faĭnshteĭn, Joint essential spectrum of a family of linear operators, Funct. Anal. Appl. 14 (1980), 152-153.
  • [9] A. S. Faĭnshteĭn, Stability of Fredholm complexes of Banach spaces with respect to perturbations which are small in q-norms, Izv. Akad. Nauk Azerbaǐdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk 1980 (1), 3-8 (in Russian).
  • [10] K.-H. Förster and E.-O. Liebentrau, Semi-Fredholm operators and sequence conditions, Manuscripta Math. 44 (1983), 35-44.
  • [11] M. Putinar, Functional calculus and the Gelfand transformation, Studia Math. 84 (1984), 83-86.
  • [12] B. N. Sadovskiĭ, Limit-compact and condensing operators, Russian Math. Surveys 27 (1972), 85-155.
  • [13] N. Sibony, Multidimensional analytic structure in the spectrum of a uniform algebra, in: Spaces of Analytic Functions, Kristiansand, Norway 1975, Lecture Notes in Math. 512, Springer, Berlin, 139-175.
  • [14] Z. Słodkowski, An infinite family of joint spectra, Studia Math. 61 (1977), 239-255.
  • [15] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, ibid. 50 (1974), 127-148.
  • [16] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191.
  • [17] J. L. Taylor, The analytic functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38.
  • [18] T. Tonev, New relations between Sibony-Basener boundaries, in: Complex Analysis III, C. A. Berenstein (ed.), Lecture Notes in Math. 1277, Springer, Berlin 1987, 256-262.
  • [19] V. Wrobel, The boundary of Taylor's joint spectrum for two commuting Banach space operators, Studia Math. 84 (1986), 105-111.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv105i1p69bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.