ArticleOriginal scientific text

Title

The Słodkowski spectra and higher Shilov boundaries

Authors 1

Affiliations

  1. Institute of Mathematics, Czechoslovak Academy of Sciences, Žitná 25, 115 67 Praha 1, Czechoslovakia

Abstract

We investigate relations between the spectra defined by Słodkowski [14] and higher Shilov boundaries of the Taylor spectrum. The results generalize the well-known relation between the approximate point spectrum and the usual Shilov boundary.

Bibliography

  1. E. Albrecht and F.-H. Vasilescu, Stability of the index of a semi-Fredholm complex of Banach spaces, J. Funct. Anal. 66 (1986), 141-172.
  2. R. Basener, A generalized Shilov boundary and analytic structure, Proc. Amer. Math. Soc. 47 (1975), 98-104.
  3. F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973.
  4. J. J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977), 309-314.
  5. M. Chō and M. Takaguchi, Boundary of Taylor's joint spectrum for two commuting operators, Sci. Rep. Hirosaki Univ. 28 (1981), 1-4.
  6. G. Corach and F. D. Suárez, Generalized rational convexity in Banach algebras, Pacific J. Math. 140 (1989), 35-51.
  7. R. E. Curto, Connections between Harte and Taylor spectrum, Rev. Roumaine Math. Pures Appl. 31 (1986), 203-215.
  8. A. S. Faĭnshteĭn, Joint essential spectrum of a family of linear operators, Funct. Anal. Appl. 14 (1980), 152-153.
  9. A. S. Faĭnshteĭn, Stability of Fredholm complexes of Banach spaces with respect to perturbations which are small in q-norms, Izv. Akad. Nauk Azerbaǐdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk 1980 (1), 3-8 (in Russian).
  10. K.-H. Förster and E.-O. Liebentrau, Semi-Fredholm operators and sequence conditions, Manuscripta Math. 44 (1983), 35-44.
  11. M. Putinar, Functional calculus and the Gelfand transformation, Studia Math. 84 (1984), 83-86.
  12. B. N. Sadovskiĭ, Limit-compact and condensing operators, Russian Math. Surveys 27 (1972), 85-155.
  13. N. Sibony, Multidimensional analytic structure in the spectrum of a uniform algebra, in: Spaces of Analytic Functions, Kristiansand, Norway 1975, Lecture Notes in Math. 512, Springer, Berlin, 139-175.
  14. Z. Słodkowski, An infinite family of joint spectra, Studia Math. 61 (1977), 239-255.
  15. Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, ibid. 50 (1974), 127-148.
  16. J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191.
  17. J. L. Taylor, The analytic functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38.
  18. T. Tonev, New relations between Sibony-Basener boundaries, in: Complex Analysis III, C. A. Berenstein (ed.), Lecture Notes in Math. 1277, Springer, Berlin 1987, 256-262.
  19. V. Wrobel, The boundary of Taylor's joint spectrum for two commuting Banach space operators, Studia Math. 84 (1986), 105-111.
Pages:
69-75
Main language of publication
English
Received
1992-04-16
Published
1993
Exact and natural sciences