ArticleOriginal scientific text
Title
On the eigenvalue asymptotics of certain Schrödinger operators
Authors 1
Affiliations
- Institute of Mathematics, Polish Academy of Sciences, Wrocław Branch, Kopernika 18, 51-617 Wrocław, Poland
Abstract
Subelliptic estimates on nilpotent Lie groups and the Cwikel-Lieb-Rosenblum inequality are used to estimate the number of eigenvalues for Schrödinger operators with polynomial potentials.
Bibliography
- W. Cupała, On the essential spectrum and eigenvalue asymptotics of certain Schrödinger operators, Studia Math. 96 (1990), 195-202.
- Ch. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207.
- K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216.
- B. Simon, Functional Integration and Quantum Physics, Academic Press, 1979.