Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1993 | 104 | 3 | 285-306
Tytuł artykułu

Commutators based on the Calderón reproducing formula

Treść / Zawartość
Warianty tytułu
Języki publikacji
We prove the Schatten-Lorentz ideal criteria for commutators of multiplications and projections based on the Calderón reproducing formula and the decomposition theorem for the space of symbols corresponding to commutators in the Schatten ideal.
Słowa kluczowe
  • Institute of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland, knowak@plwruw11.bitnet
  • [A] J. Arazy, Some remarks on interpolation theorems and the boundedness of the triangular projection in unitary matrix spaces, Integral Equations Operator Theory 1 (1978), 453-495.
  • [AFP] J. Arazy, S. Fisher and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1055.
  • [Ax] S. Axler, Bergman spaces and their operators, in: Surveys of Some Recent Results in Operator Theory, J. B. Conway and B. B. Morrel (eds.), Pitman Res. Notes in Math. 171, Longman, 1988, 1-50.
  • [B] A. F. Beardon, The Geometry of Discrete Groups, Springer, New York 1983.
  • [BBCZ] D. Békollé, C. A. Berger, L. A. Coburn and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), 310-350.
  • [BL] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Grundlehren Math. Wiss. 223, Springer, Berlin 1976.
  • [Bu] H. Q. Bui, Harmonic functions, Riesz potentials, and the Lipschitz spaces of Herz, Hiroshima Math. J. 9 (1979), 245-295.
  • [CR] R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L^p$, Astérisque 77 (1980), 12-66.
  • [E] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
  • [F] H. G. Feichtinger, Wiener amalgams over Euclidean spaces and some of their applications, in: Proc. Conference on Function Spaces, Edwardsville, Illinois, April 1990, Lecture Notes in Pure and Appl. Math., Marcel Dekker, to appear.
  • [FG] H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions I, J. Funct. Anal. 86 (1989), 307-340.
  • [FR] M. Feldman and R. Rochberg, Singular value estimates for commutators and Hankel operators on the unit ball and the Heisenberg group, in: Analysis and Partial Differential Equations, Cora Sadosky (ed.), Marcel Dekker, New York 1990, 121-159.
  • [FS] J. J. F. Fournier and J. Stewart, Amalgams of $L^p$ and $l^q$, Bull. Amer. Math. Soc. 13 (1985), 1-21.
  • [FJ1] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799.
  • [FJ2] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
  • [FJW] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., Providence, R.I., 1991.
  • [GK] I. Gohberg and M. G. Krein, Introduction to the Theory of Linear Non-Self-Adjoint Operators, Transl. Math. Monographs, Amer. Math. Soc., Providence, R.I., 1969.
  • [GMP] A. Grossmann, J. Morlet and T. Paul, Transforms associated to square integrable group representations II: examples, Ann. Inst. Henri Poincaré 45 (1986), 293-309.
  • [H] S. Helgason, Groups and Geometric Analysis, Academic Press, Orlando, Fla., 1984.
  • [J] S. Janson, Hankel operators between weighted Bergman spaces, Ark. Mat. 26 (1988), 205-219.
  • [Lu] D. H. Luecking, Characterizations of certain classes of Hankel operators on the Bergman spaces of the unit disk, preprint, 1991.
  • [Mc] C. A. McCarthy, $c_p$, Israel J. Math. 5 (1967), 249-271.
  • [M] Y. Meyer, Ondelettes et Opérateurs I, II, III, Hermann, Paris 1990.
  • [N] K. Nowak, Weak type estimate for singular values of commutators on weighted Bergman spaces, Indiana Univ. Math. J., to appear.
  • [Pe] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Dept. Math., Duke Univ., Durham, N.C., 1976.
  • [RT] F. Ricci and M. Taibleson, Boundary values of harmonic functions in mixed norm spaces and their atomic structure, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), 1-54.
  • [R1] R. Rochberg, Toeplitz and Hankel operators, wavelets, NWO sequences, and almost diagonalization of operators, in: Proc. Sympos. Pure Math. 51, W. B. Arveson and R. G. Douglas (eds.), Amer. Math. Soc., 1990, 425-444.
  • [R2] R. Rochberg, Decomposition theorems for Bergman spaces and their applications, in: Operators and Function Theory, S. C. Power (ed.), Reidel, Dordrecht 1985, 225-278.
  • [RS1] R. Rochberg and S. Semmes, Nearly weakly orthonormal sequences, singular values estimates, and Calderón-Zygmund operators, J. Funct. Anal. 86 (1989), 237-306.
  • [RS2] R. Rochberg and S. Semmes, End point results for estimates of singular values of integral operators, in: Contributions to Operator Theory and its Applications, Oper. Theory: Adv. Appl. 35, I. Gohberg et al. (eds.), Birkhäuser, Boston 1988, 217-231.
  • [Se] S. Semmes, Trace ideal criteria for Hankel operators, and applications to Besov spaces, Integral Equations Operator Theory 7 (1984), 241-281.
  • [Si] B. Simon, Trace Ideals and Their Applications, Cambridge Univ. Press, London 1979.
  • [Str] K. Stroethoff, Compact Hankel operators on the Bergman space, Illinois J. Math. 34 (1990), 159-174.
  • [T] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications, Springer, New York 1985.
  • [Tr] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel 1983.
  • [Z1] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York 1990.
  • [Z2] K. Zhu, VMO, ESV, and Toeplitz operators on the Bergman space, Trans. Amer. Math. Soc. 302 (1987), 617-646.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.