ArticleOriginal scientific text
Title
Pointwise estimates for densities of stable semigroups of measures
Authors 1, 1
Affiliations
- Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Abstract
Let be a symmetric α-stable semigroup of probability measures on a homogeneous group N, where 0 < α < 2. Assume that are absolutely continuous with respect to Haar measure and denote by the corresponding densities. We show that the estimate
, x≠0,
holds true with some integrable function Ω on the unit sphere Σ if and only if the density of the Lévy measure of the semigroup belongs locally to the Zygmund class LlogL(N╲{e}). The problem turns out to be related to the properties of the maximal function
which, as is proved here, is of weak type (1,1).
Bibliography
- A. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353.
- R. R. Coifman et G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin 1971.
- R. R. Coifman et G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., Providence 1977.
- M. Duflo, Représentations de semi-groupes de mesures sur un groupe localement compact, Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 225-249.
- J. Dziubański, Asymptotic behaviour of densities of stable semigroups of measures, Probab. Theory Related Fields 87 (1991), 459-467.
- W. Emerson, The pointwise ergodic theorem for amenable groups, Amer. J. Math. 96 (1974), 472-487.
- G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton 1982.
- P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582.
- P. Głowacki, Lipschitz continuity of densities of stable semigroups of measures, Colloq. Math., to appear.
- P. Głowacki and A. Hulanicki, A semi-group of probability measures with non-smooth differentiable densities on a Lie group, Colloq. Math. 51 (1987), 131-139.
- M. de Guzmán, Differentiation of Integrals in
, Springer, Berlin 1975. - W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231-236.
- A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 882, Springer, Berlin 1980, 82-101.
- A. Hulanicki, Subalgebra of
associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. - T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin 1966.
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin 1983.
- E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals, Invent. Math. 74 (1983), 63-83.
- F. Zo, A note on approximation of the identity, Studia Math. 55 (1976), 111-122.