ArticleOriginal scientific text

Title

Pointwise estimates for densities of stable semigroups of measures

Authors 1, 1

Affiliations

  1. Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

Let {μt} be a symmetric α-stable semigroup of probability measures on a homogeneous group N, where 0 < α < 2. Assume that μt are absolutely continuous with respect to Haar measure and denote by ht the corresponding densities. We show that the estimate ht(x)tΩ(x/|x|)|x|-n-α, x≠0, holds true with some integrable function Ω on the unit sphere Σ if and only if the density of the Lévy measure of the semigroup belongs locally to the Zygmund class LlogL(N╲{e}). The problem turns out to be related to the properties of the maximal function f(x)=t>01t|0tht-sfhs(x)ds| which, as is proved here, is of weak type (1,1).

Bibliography

  1. A. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353.
  2. R. R. Coifman et G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin 1971.
  3. R. R. Coifman et G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., Providence 1977.
  4. M. Duflo, Représentations de semi-groupes de mesures sur un groupe localement compact, Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 225-249.
  5. J. Dziubański, Asymptotic behaviour of densities of stable semigroups of measures, Probab. Theory Related Fields 87 (1991), 459-467.
  6. W. Emerson, The pointwise ergodic theorem for amenable groups, Amer. J. Math. 96 (1974), 472-487.
  7. G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton 1982.
  8. P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582.
  9. P. Głowacki, Lipschitz continuity of densities of stable semigroups of measures, Colloq. Math., to appear.
  10. P. Głowacki and A. Hulanicki, A semi-group of probability measures with non-smooth differentiable densities on a Lie group, Colloq. Math. 51 (1987), 131-139.
  11. M. de Guzmán, Differentiation of Integrals in n, Springer, Berlin 1975.
  12. W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231-236.
  13. A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 882, Springer, Berlin 1980, 82-101.
  14. A. Hulanicki, Subalgebra of L1(G) associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287.
  15. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin 1966.
  16. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin 1983.
  17. E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals, Invent. Math. 74 (1983), 63-83.
  18. F. Zo, A note on approximation of the identity, Studia Math. 55 (1976), 111-122.
Pages:
243-258
Main language of publication
English
Received
1992-03-31
Accepted
1992-11-23
Published
1993
Exact and natural sciences