ArticleOriginal scientific text

Title

Bessaga's conjecture in unstable Köthe spaces and products

Authors 1, 2

Affiliations

  1. Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey
  2. Department of Mathematics, The Islamic University of Gaza, P.O. Box 108, Gaza, Gaza Strip

Abstract

Let F be a complemented subspace of a nuclear Fréchet space E. If E and F both have (absolute) bases (en) resp. (fn), then Bessaga conjectured (see [2] and for a more general form, also [8]) that there exists an isomorphism of F into E mapping fn to tneπ(kn) where (tn) is a scalar sequence, π is a permutation of ℕ and (kn) is a subsequence of ℕ. We prove that the conjecture holds if E is unstable, i.e. for some base of decreasing zero-neighborhoods (Un) consisting of absolutely convex sets one has ∃s ∀p ∃q ∀r limndn+1(Uq,Up)dn(Ur,Us)=0 where dn(U,V) denotes the nth Kolmogorov diameter.

Bibliography

  1. H. Ahonen, On nuclear spaces defined by Dragilev functions, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 38 (1981), 1-57.
  2. C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), 307-318.
  3. L. Crone and W. B. Robinson, Every nuclear Fréchet space with a regular basis has the quasi-equivalence property, ibid. 52 (1975), 203-207.
  4. M. M. Dragilev, On special dimensions defined on some classes of Köthe spaces, Math. USSR-Sb. 9 (2) (1968), 213-228.
  5. M. M. Dragilev, On regular bases in nuclear spaces, Amer. Math. Soc. Transl. (2) 93 (1970), 61-82.
  6. E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Lecture Notes in Math. 720, Springer, Berlin 1979.
  7. M. Hall, Jr., Combinatorial Theory, Blaisdell-Waltham, 1967.
  8. V. P. Kondakov, On a certain generalization of power series spaces, in: Current Problems in Mathematical Analysis, Rostov State Univ., 1978, 92-99 (in Russian).
  9. V. P. Kondakov, Properties of bases of some Köthe spaces and their subspaces, in: Functional Analysis and its Applications 14, Rostov State Univ., 1980, 58-59 (in Russian).
  10. V. P. Kondakov, Unconditional bases in certain Köthe spaces, Sibirsk. Mat. Zh. 25 (3) (1984), 109-119 (in Russian).
  11. G. Köthe, Topologische lineare Räume I, Springer, Berlin 1960.
  12. J. Krone, Bases in the range of operators between Köthe spaces, Doğa Tr. J. Math. 10 (1986), 162-166 (special issue).
  13. B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Uspekhi Mat. Nauk 16 (4) (1961), 73-132 (in Russian).
  14. B. S. Mityagin, Equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111-137 (in Russian).
  15. Z. Nurlu, On pairs of Köthe spaces between which all operators are compact, Math. Nachr. 122 (1985), 272-287.
  16. A. Pietsch, Nuclear Locally Convex Spaces, Springer, Berlin 1972.
  17. J. Prada, On idempotent operators on Fréchet spaces, Arch. Math. (Basel) 43 (1984), 179-182.
  18. J. Sarsour, Bessaga's conjecture and quasi-equivalence property in unstable Köthe spaces, Ph.D. Thesis, METU, Ankara 1991.
  19. T. Terzioğlu, Unstable Köthe spaces and the functor Ext, Doğa Tr. J. Math. 10 (1986), 227-231 (special issue).
  20. D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269-301.
Pages:
221-228
Main language of publication
English
Received
1991-12-17
Accepted
1992-10-06
Published
1993
Exact and natural sciences