ArticleOriginal scientific text
Title
Bessaga's conjecture in unstable Köthe spaces and products
Authors 1, 2
Affiliations
- Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey
- Department of Mathematics, The Islamic University of Gaza, P.O. Box 108, Gaza, Gaza Strip
Abstract
Let F be a complemented subspace of a nuclear Fréchet space E. If E and F both have (absolute) bases resp. , then Bessaga conjectured (see [2] and for a more general form, also [8]) that there exists an isomorphism of F into E mapping to where is a scalar sequence, π is a permutation of ℕ and is a subsequence of ℕ. We prove that the conjecture holds if E is unstable, i.e. for some base of decreasing zero-neighborhoods consisting of absolutely convex sets one has
∃s ∀p ∃q ∀r
where denotes the nth Kolmogorov diameter.
Bibliography
- H. Ahonen, On nuclear spaces defined by Dragilev functions, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 38 (1981), 1-57.
- C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), 307-318.
- L. Crone and W. B. Robinson, Every nuclear Fréchet space with a regular basis has the quasi-equivalence property, ibid. 52 (1975), 203-207.
- M. M. Dragilev, On special dimensions defined on some classes of Köthe spaces, Math. USSR-Sb. 9 (2) (1968), 213-228.
- M. M. Dragilev, On regular bases in nuclear spaces, Amer. Math. Soc. Transl. (2) 93 (1970), 61-82.
- E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Lecture Notes in Math. 720, Springer, Berlin 1979.
- M. Hall, Jr., Combinatorial Theory, Blaisdell-Waltham, 1967.
- V. P. Kondakov, On a certain generalization of power series spaces, in: Current Problems in Mathematical Analysis, Rostov State Univ., 1978, 92-99 (in Russian).
- V. P. Kondakov, Properties of bases of some Köthe spaces and their subspaces, in: Functional Analysis and its Applications 14, Rostov State Univ., 1980, 58-59 (in Russian).
- V. P. Kondakov, Unconditional bases in certain Köthe spaces, Sibirsk. Mat. Zh. 25 (3) (1984), 109-119 (in Russian).
- G. Köthe, Topologische lineare Räume I, Springer, Berlin 1960.
- J. Krone, Bases in the range of operators between Köthe spaces, Doğa Tr. J. Math. 10 (1986), 162-166 (special issue).
- B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Uspekhi Mat. Nauk 16 (4) (1961), 73-132 (in Russian).
- B. S. Mityagin, Equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111-137 (in Russian).
- Z. Nurlu, On pairs of Köthe spaces between which all operators are compact, Math. Nachr. 122 (1985), 272-287.
- A. Pietsch, Nuclear Locally Convex Spaces, Springer, Berlin 1972.
- J. Prada, On idempotent operators on Fréchet spaces, Arch. Math. (Basel) 43 (1984), 179-182.
- J. Sarsour, Bessaga's conjecture and quasi-equivalence property in unstable Köthe spaces, Ph.D. Thesis, METU, Ankara 1991.
- T. Terzioğlu, Unstable Köthe spaces and the functor Ext, Doğa Tr. J. Math. 10 (1986), 227-231 (special issue).
- D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269-301.