ArticleOriginal scientific text

Title

Weighted estimates for commutators of linear operators

Authors 1, 1, 1, 1, 2

Affiliations

  1. Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003, U.S.A.
  2. Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract

We study boundedness properties of commutators of general linear operators with real-valued BMO functions on weighted Lp spaces. We then derive applications to particular important operators, such as Calderón-Zygmund type operators, pseudo-differential operators, multipliers, rough singular integrals and maximal type operators.

Keywords

bounded mean oscillation, singular integrals, maximal functions, weighted inequalities

Bibliography

  1. J. Alvarez, An algebra of Lp-bounded pseudo-differential operators, J. Math. Anal. Appl. 94 (1983), 268-282.
  2. J. Alvarez and J. Hounie, Estimates for the kernel and continuity properties of pseudo-differential operators, Ark. Mat. 28 (1990), 1-22.
  3. J. Alvarez and M. Milman, Hp continuity properties of Calderón-Zygmund-type operators, J. Math. Anal. Appl. 118 (1986), 63-79.
  4. J. Alvarez and M. Milman, Vector valued inequalities for strongly singular Calderón-Zygmund operators, Rev. Mat. Iberoamericana 2 (1986), 405-426.
  5. C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston 1988.
  6. S. Chanillo and A. Torchinsky, Sharp function and weighted Lp estimates for a class of pseudo-differential operators, Ark. Mat. 24 (1986), 1-25.
  7. R. Coifman et Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57 (1978).
  8. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
  9. R. L. Combs, Weighted norm inequalities with general weights for multipliers on functions with vanishing moments, Ph.D. thesis, New Mexico State Univ., Las Cruces, N.Mex., 1991.
  10. J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, preprint.
  11. J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561.
  12. N. Dunford and J. Schwartz, Linear Operators, Part I, Wiley Interscience, New York 1958.
  13. C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 123 (1969), 9-36.
  14. C. Fefferman and E. M. Stein, Hp spaces of several variables, ibid. 129 (1972), 137-193.
  15. J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam 1985.
  16. S. Hofmann, Weighted norm inequalities and vector-valued inequalities for certain rough operators, preprint.
  17. L. Hörmander, Pseudo-differential operators and hypo-elliptic operators, in: Proc. Sympos. Pure Math. 10, Amer. Math. Soc., 1967, 138-183.
  18. J. Hounie, On the L2 continuity of pseudo-differential operators, Comm. Partial Differential Equations 11 (1986), 765-778.
  19. R. A. Hunt and W.-S. Young, A weighted norm inequality for Fourier series, Bull. Amer. Math. Soc. 80 (1974), 274-277.
  20. S. Janson, Mean oscillation and commutators of singular integrals operators, Ark. Mat. 16 (1978), 263-270.
  21. T. Kato, Perturbation Theory for Linear Operators, Springer, 1976.
  22. D. S. Kurtz, Operator estimates using the sharp function, Pacific J. Math. 139 (1989), 267-277.
  23. D. S. Kurtz and R. L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343-362.
  24. N. Miller, Weighted Sobolev spaces and pseudodifferential operators with smooth symbols, ibid. 269 (1982), 91-109.
  25. B. Muckenhoupt, R. L. Wheeden and W.-S. Young, Sufficiency conditions for Lp multipliers with general weights, ibid. 300 (1987), 463-502.
  26. C. Neugebauer, Inserting Ap-weights, Proc. Amer. Math. Soc. 87 (1983), 644-648.
  27. J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator valued kernels, Adv. in Math. 62 (1986), 7-48.
  28. E. Sawyer, Multipliers on Besov and power-weighted L2 spaces, Indiana Univ. Math. J. 33 (1984), 353-366.
  29. E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492.
  30. J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, 1989.
  31. D. K. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), 389-400.
  32. A. C. Zaanen, Interpolation, North-Holland, 1967.
Pages:
195-209
Main language of publication
English
Received
1992-03-03
Accepted
1992-09-07
Published
1993
Exact and natural sciences