ArticleOriginal scientific text

Title

A Carlson type inequality with blocks and interpolation

Authors 1, 2, 2

Affiliations

  1. Department of Mathematics, Yaroslavl State University, Sovetskaya 14, 150 000 Yaroslavl, Russia
  2. Department of Mathematics, Luleå University, S-951 87 Luleå, Sweden

Abstract

An inequality, which generalizes and unifies some recently proved Carlson type inequalities, is proved. The inequality contains a certain number of "blocks" and it is shown that these blocks are, in a sense, optimal and cannot be removed or essentially changed. The proof is based on a special equivalent representation of a concave function (see [6, pp. 320-325]). Our Carlson type inequality is used to characterize Peetre's interpolation functor φ (see [26]) and its Gagliardo closure on couples of functional Banach lattices in terms of the Calderón-Lozanovskiǐ construction. Our interest in this functor is inspired by the fact that if φ=tθ(0<θ<1), then, on couples of Banach lattices and their retracts, it coincides with the complex method (see [20], [27]) and, thus, it may be regarded as a "real version" of the complex method.

Keywords

concavity, Carlson's inequality, blocks, interpolation, Peetre's interpolation functor, Calderón-Lozanovskiǐ construction

Bibliography

  1. N. Aronszajn and E. Gagliardo, Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. 68 (1965), 51-117.
  2. E. F. Beckenbach and R. Bellman, Inequalities, Springer, 1983.
  3. E. I. Berezhnoǐ, Interpolation of linear and compact operators in φ(X0,X1) spaces, in: Qualitative and Approximative Methods for the Investigation of Operator Equations 5, Yaroslavl 1980, 19-29 (in Russian).
  4. J. Bergh and J. Löfström, Interpolation Spaces, Springer, 1976.
  5. Yu. A. Brudnyǐ and N. Ya. Kruglyak, Interpolation Functors, book manuscript, Yaroslavl 1981 (in Russian).
  6. Yu. A. Brudnyǐ and N. Ya. Kruglyak, Interpolation Functors and Interpolation Spaces I, North-Holland, 1991.
  7. A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 133-190.
  8. F. Carlson, Une inégalité, Ark. Mat. Astr. Fysik 25 B (1934), 1-5.
  9. E. Gagliardo, Caratterizzazione costruttiva di tutti gli spazi interpolazione tra spazi di Banach, in: Symposia Math. 2 (INDAM, Rome 1968), Academic Press, London 1969, 95-106.
  10. J. Gustavsson, On interpolation of weighted Lp-spaces and Ovchinnikov's theorem, Studia Math. 72 (1982), 237-251.
  11. J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces, ibid. 60 (1977), 33-59.
  12. G. H. Hardy, A note on two inequalities, J. London Math. Soc. 11 (1936), 167-170.
  13. S. Janson, Minimal and maximal methods of interpolation, J. Funct. Anal. 44 (1981), 50-73.
  14. B. Kjellberg, On some inequalities, in: C. R. Dixième Congrès des Mathématiciens Scandinaves 1946, Jul. Gjellerups Forlag, Copenhagen 1946, 333-340.
  15. N. Ya. Kruglyak, A new proof of the Riesz-Thorin theorem and interpolation property of the Calderón-Lozanovskiǐ construction, research report, Yaroslavl 1983 (VINITI No. 6909-83 Dep.) (in Russian).
  16. N. Ya. Kruglyak and M. Mastyło, Correct interpolation functors of orbits, J. Funct. Anal., to appear.
  17. G. Ya. Lozanovskiǐ, A remark on an interpolation theorem of Calderón, Funktsional. Anal. i Prilozhen. 6 (4) (1972), 89-90; English transl.: Functional Anal. Appl. 6 (1972), 333-334.
  18. G. Ya. Lozanovskiǐ, On some Banach lattices. IV, Sibirsk. Mat. Zh. 14 (1973), 140-155 (in Russian).
  19. G. Ya. Lozanovskiǐ, On a complex method of interpolation in Banach lattices of measurable functions, Dokl. Akad. Nauk SSSR 226 (1976), 55-57; English transl.: Soviet Math. Dokl. 17 (1) (1976), 51-54.
  20. G. Ya. Lozanovskiǐ, The complex method of interpolation in Banach lattices of measurable functions, in: Probl. Mat. Anal. 7, Leningrad 1979, 83-99 (in Russian)
  21. L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math. 5, Campinas 1989.
  22. P. Nilsson, Interpolation of Banach lattices, Studia Math. 82 (1985), 133-154.
  23. V. I. Ovchinnikov, Interpolation theorems following from Grothendieck's inequality, Funktsional. Anal. i Prilozhen. 10 (4) (1976), 45-54; English transl.: Functional Anal. Appl. 10 (1976), 287-294 (1977).
  24. V. I. Ovchinnikov, Interpolation of quasi-normed Orlicz spaces, Funktsional. Anal. i Prilozhen. 16 (3) (1982), 78-79; English transl.: Functional Anal. Appl. 16 (1982), 223-224 (1983).
  25. V. I. Ovchinnikov, The Method of Orbits in Interpolation Theory, Math. Rep. 1, Part 2, Harwood, 1984.
  26. J. Peetre, Sur l'utilisation des suites inconditionnellement sommables dans la théorie des espaces d'interpolation, Rend. Sem. Mat. Univ. Padova 46 (1971), 173-190.
  27. V. A. Shestakov, Complex interpolation in Banach spaces of measurable functions, Vestnik Leningrad. Univ. 1974 (19), 64-68 (in Russian).
  28. V. A. Shestakov, Transformations of Banach ideal spaces and the interpolation of linear operators, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 569-577 (in Russian).
  29. P. P. Zabreǐko, An interpolation theorem for linear operators, Mat. Zametki 2 (1967), 593-598; English transl. in Math. Notes 2 (1967).
Pages:
161-180
Main language of publication
English
Received
1992-05-13
Published
1993
Exact and natural sciences