ArticleOriginal scientific text

Title

Interpolation of operators when the extreme spaces are L

Authors 1, 1

Affiliations

  1. Departamento de Matemáticas, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.

Abstract

Under some assumptions on the pair (A0,B0), we study equivalence between interpolation properties of linear operators and monotonicity conditions for a pair (Y,Z) of rearrangement invariant quasi-Banach spaces when the extreme spaces of the interpolation are L. Weak and restricted weak intermediate spaces fall within our context. Applications to classical Lorentz and Lorentz-Orlicz spaces are given.

Bibliography

  1. M. A. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (2) (1990), 727-735.
  2. C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988.
  3. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, 1976.
  4. D. W. Boyd, Indices of function spaces and their relationship to interpolation, Canad. J. Math. 21 (1969), 1245-1254.
  5. A. P. Calderón, Spaces between L1 and L and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299.
  6. M. Cwikel, K-divisibility of the K-functional and Calderón couples, Ark. Mat. 22 (1) (1984), 39-62.
  7. J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam 1985.
  8. N. J. Kalton, Endomorphisms of symmetric function spaces, Indiana Univ. Math. J. 34 (2) (1985), 225-247.
  9. A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29-38.
  10. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, 1979.
  11. G. Lorentz and T. Shimogaki, Interpolation theorems for the pairs of spaces (Lp,L) and (L1,Lq), Trans. Amer. Math. Soc. 139 (1971), 207-221.
  12. L. Maligranda, A generalization of the Shimogaki theorem, Studia Math. 71 (1981), 69-83.
  13. L. Maligranda, Indices and interpolation, Dissertationes Math. 234 (1985).
  14. M. Mastyło, Interpolation of linear operators in Calderón-Lozanovskii spaces, Comment. Math. 26 (2) (1986), 247-256.
  15. S. J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces, Studia Math. 103 (1992), 161-189.
  16. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
  17. Y. Raynaud, On Lorentz-Sharpley spaces, in: Proc. Workshop "Interpolation Spaces and Related Topics", Haifa, June 1990, IMCP, Vol. 5 (1992), 207-228.
  18. E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145-158.
  19. R. Sharpley, Spaces Λα(X) and interpolation, J. Funct. Anal. 11 (1972), 479-513.
  20. T. Shimogaki, An interpolation theorem on Banach function spaces, Studia Math. 31 (1968), 233-240.
  21. A. Torchinsky, Interpolation of operators and Orlicz classes, ibid. 59 (1976), 177-207.
  22. M. Zippin, Interpolation of operators of weak type between rearrangement invariant function spaces, J. Funct. Anal. 7 (1971), 267-284.
Pages:
133-150
Main language of publication
English
Received
1992-01-24
Published
1993
Exact and natural sciences