ArticleOriginal scientific text

Title

Nonseparability of the quotient space cabv(∑,m;X)/L¹(m;X) for Banach spaces X without the Radon-Nikodym property

Authors 1

Affiliations

  1. Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

Abstract

It is shown that if (S,∑,m) is an atomless finite measure space and X is a Banach space without the Radon-Nikodym property, then the quotient space cabv(∑,m;X)/L¹(m;X) is nonseparable.

Keywords

Banach space, spaces of vector measures, Bochner integrable functions, Radon-Nikodym property, nonseparable quotient space

Bibliography

  1. J. Bourgain, Dunford-Pettis operators on L1 and the Radon-Nikodym property, Israel J. Math. 37 (1980), 34-47.
  2. R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, Berlin 1983.
  3. J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
  4. L. Drewnowski, Another note on copies of l and c0 in ca(Σ, X), and the equality ca(Σ, X) = cca(Σ, X), preprint, 1990.
  5. L. Drewnowski and G. Emmanuele, The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of c0, this volume, 111-123.
  6. Z. Lipecki, Conditional and simultaneous extensions of group-valued quasi-measures, Glas. Mat. 19 (1984), 49-58.
  7. R. D. Mauldin, Some effects of set-theoretical assumptions in measure theory, Adv. in Math. 27 (1978), 45-62.
  8. A. Michalak, in preparation.
Pages:
125-132
Main language of publication
English
Received
1991-05-14
Accepted
1992-11-20
Published
1993
Exact and natural sciences