ArticleOriginal scientific text
Title
Nonseparability of the quotient space cabv(∑,m;X)/L¹(m;X) for Banach spaces X without the Radon-Nikodym property
Authors 1
Affiliations
- Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
Abstract
It is shown that if (S,∑,m) is an atomless finite measure space and X is a Banach space without the Radon-Nikodym property, then the quotient space cabv(∑,m;X)/L¹(m;X) is nonseparable.
Keywords
Banach space, spaces of vector measures, Bochner integrable functions, Radon-Nikodym property, nonseparable quotient space
Bibliography
- J. Bourgain, Dunford-Pettis operators on
and the Radon-Nikodym property, Israel J. Math. 37 (1980), 34-47. - R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, Berlin 1983.
- J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
- L. Drewnowski, Another note on copies of
and in ca(Σ, X), and the equality ca(Σ, X) = cca(Σ, X), preprint, 1990. - L. Drewnowski and G. Emmanuele, The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of
, this volume, 111-123. - Z. Lipecki, Conditional and simultaneous extensions of group-valued quasi-measures, Glas. Mat. 19 (1984), 49-58.
- R. D. Mauldin, Some effects of set-theoretical assumptions in measure theory, Adv. in Math. 27 (1978), 45-62.
- A. Michalak, in preparation.