ArticleOriginal scientific text
Title
L-summands in their biduals have Pełczyński's property (V*)
Authors 1
Affiliations
- FB Mathematik, I. Institut, Arnimallee 3, D-1000 Berlin 33, Germany
Abstract
Banach spaces which are L-summands in their biduals - for example , the predual of any von Neumann algebra, or the dual of the disc algebra - have Pełczyński's property (V*), which means that, roughly speaking, the space in question is either reflexive or is weakly sequentially complete and contains many complemented copies of .
Bibliography
- J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin 1984.
- G. A. Edgar, An ordering for the Banach spaces, Pacific J. Math. 108 (1983), 83-98.
- G. Godefroy, Sous-espaces bien disposés de
- applications, Trans. Amer. Math. Soc. 286 (1984), 227-249. - G. Godefroy, Existence and uniqueness of isometric preduals: a survey, in: Bor-Luh Lin (ed.), Banach Space Theory, Proc. of the Iowa Workshop on Banach Space Theory 1987, Contemp. Math. 85, Amer. Math. Soc., 1989, 131-193.
- G. Godefroy et M. Talagrand, Nouvelles classes d'espaces de Banach à prédual unique, Séminaire d'Analyse Fonctionnelle de l'Ecole Polytechnique, 1980-81.
- P. Harmand, M-Ideale und die Einbettung eines Banachraumes in seinen Bidualraum, Dissertation, FU Berlin, 1983.
- P. Harmand, D. Werner, and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, monograph in preparation.
- W. Hensgen, Contributions to the geometry of vector-valued
and spaces, Habilitationsschrift, Universität Regensburg, 1992. - R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
- D. Li, Espaces L-facteurs de leurs biduaux: bonne disposition, meilleure approximation et propriété de Radon-Nikodym, Quart. J. Math. Oxford (2) 38 (1987), 229-243.
- D. Li, Lifting properties for some quotients of
-spaces and other spaces L-summand in their bidual, Math. Z. 199 (1988), 321-329. - J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin 1977.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin 1979.
- A. Pełczyński, On the isomorphism of the spaces m and M, Bull. Acad. Polon. Sci. 6 (1958), 695-696.
- M. Takesaki, Theory of Operator Algebras I, Springer, Berlin 1979.
- M. Talagrand, A new type of affine Borel functions, Math. Scand. 54 (1984), 183-188.