ArticleOriginal scientific text

Title

Isometries of Musielak-Orlicz spaces II

Authors 1, 1, 1

Affiliations

  1. Department of Mathematics, Memphis State University, Memphis, Tennessee 38152, U.S.A.

Abstract

A characterization of isometries of complex Musielak-Orlicz spaces LΦ is given. If LΦ is not a Hilbert space and U:LΦLΦ is a surjective isometry, then there exist a regular set isomorphism τ from (T,Σ,μ) onto itself and a measurable function w such that U(f) = w ·(f ∘ τ) for all fLΦ. Isometries of real Nakano spaces, a particular case of Musielak-Orlicz spaces, are also studied.

Bibliography

  1. S. Banach, Theory of Linear Operations, North-Holland, 1987.
  2. E. Berkson and H. Porta, Hermitian operators and one-parameter groups of isometries in Hardy spaces, Trans. Amer. Math. Soc. 185 (1973), 331-344.
  3. F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge University Press, 1971.
  4. R. Fleming and J. E. Jamison, Isometries on certain Banach spaces, J. London Math. Soc. (2) 9 (1974), 363-371.
  5. R. Fleming, J. E. Jamison and A. Kamińska, Isometries of Musielak-Orlicz spaces, in: Proceedings of the Conference on Function Spaces, Edwardsville 1990, Marcel Dekker, 1992, 139-154.
  6. J. E. Jamison and I. Loomis, Isometries of Orlicz spaces of vector valued functions, Math. Z. 193 (1986), 363-371.
  7. N. J. Kalton and G. V. Wood, Orthonormal systems in Banach spaces and their applications, Math. Proc. Cambridge Philos. Soc. 79 (1976), 493-510.
  8. A. Kamińska, Some convexity properties of Musielak-Orlicz spaces of Bochner type, Rend. Circ. Mat. Palermo (2) Suppl. 10 (1985), 63-73.
  9. A. Kamińska, Isometries of Orlicz spaces equipped with the Orlicz norm, Rocky Mountain J. Math., to appear.
  10. W. Kozlowski, Modular Function Spaces, Marcel Dekker, New York 1988.
  11. M. A. Krasnosel'skiǐ and Ya. B. Rutickiǐ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen 1961.
  12. G. Lumer, On the isometries of reflexive Orlicz spaces, Ann. Inst. Fourier (Grenoble) 13 (1) (1963), 99-109.
  13. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983.
  14. H. Nakano, Topology and Linear Spaces, Nihonbashi, Tokyo 1951.
  15. A. R. Sourour, The isometries of Lp(Ω,X), J. Funct. Anal. 30 (1978), 276-285.
  16. M. G. Zaǐdenberg, Groups of isometries of Orlicz spaces, Soviet Math. Dokl. 17 (1976), 432-436.
  17. M. G. Zaǐdenberg, On isometric classification of symmetric spaces, ibid. 18 (1977), 636-640.
Pages:
75-89
Main language of publication
English
Received
1992-01-13
Accepted
1992-09-22
Published
1993
Exact and natural sciences