ArticleOriginal scientific text
Title
Unconditional ideals in Banach spaces
Authors 1, 2, 2, 3
Affiliations
- Equipe d'Analyse, Université Paris VI, 4, Place Jussieu, F-75252 Paris Cedex 05, France
- Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211, U.S.A.
- Department of Mathematics, Technion, Haifa, Israel
Abstract
We show that a Banach space with separable dual can be renormed to satisfy hereditarily an "almost" optimal uniform smoothness condition. The optimal condition occurs when the canonical decomposition is unconditional. Motivated by this result, we define a subspace X of a Banach space Y to be an h-ideal (resp. a u-ideal) if there is an hermitian projection P (resp. a projection P with ∥I-2P∥ = 1) on Y* with kernel . We undertake a general study of h-ideals and u-ideals. For example we show that if a separable Banach space X is an h-ideal in X** then X has the complex form of Pełczyński's property (u) with constant one and the Baire-one functions Ba(X) in X** are complemented by an hermitian projection; the converse holds under a compatibility condition which is shown to be necessary.
We relate these ideas to the more familiar notion of an M-ideal, and to Banach lattices. We further investigate when, for a separable Banach space X, the ideal of compact operators K(X) is a u-ideal or an h-ideal in ℒ(X) or K(X)**. For example, we show that K(X) is an h-ideal in K(X)** if and only if X has the "unconditional compact approximation property" and X is an M-ideal in X**.
Keywords
M-ideal, hermitian operator, unconditional convergence
Bibliography
- E. M. Alfsen and E. G. Effros, Structure in real Banach spaces I, Ann. of Math. 96 (1972), 98-128.
- T. Ando, A theorem on nonempty intersection of convex sets and its application, J. Approx. Theory 13 (1975), 158-166.
- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
- F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971.
- F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973.
- R. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lecture Notes in Math. 993, Springer, Berlin 1983.
- R. E. Brackebush, James space on general trees, J. Funct. Anal. 79 (1988), 446-475.
- J. C. Cabello-Piñar, J. F. Mena-Jurado, R. Payá-Albert and A. Rodríguez-Palacios, Banach spaces which are absolute subspaces in their biduals, Quart. J. Math. Oxford 42 (1991), 175-182.
- P. G. Casazza, The commuting BAP for Banach spaces, in: Analysis at Urbana II, E. Berkson, N. T. Peck and J. J. Uhl (eds.), London Math. Soc. Lecture Note Ser. 138, Cambridge Univ. Press, 1989, 108-127.
- P. G. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: Geometry of Banach Spaces, P. F. X. Müller and W. Schachermayer (eds.), London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 49-63.
- C. H. Cho and W. B. Johnson, A characterization of subspaces X of
for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (1985), 466-470. - M. D. Choi and E. G. Effros, Lifting problems and the cohomology of C*-algebras, Canad. J. Math. 29 (1977), 1092-1101.
- M. D. Choi and E. G. Effros, The completely positive lifting problem for C*-algebras, Ann. of Math. 104 (1976), 585-609.
- W. J. Davis and W. B. Johnson, A renorming of nonreflexive Banach spaces, Proc. Amer. Math. Soc. 37 (1973), 486-488.
- M. Fabian and G. Godefroy, The dual of every Asplund space admits a projectional resolution of the identity, Studia Math. 91 (1988), 141-151.
- T. Figiel, W. B. Johnson and L. Tzafriri, On Banach lattices and spaces having local unconditional structure with applications to Lorentz spaces, J. Approx. Theory 13 (1975), 395-412.
- C. Finet, Basic sequences and smooth norms in Banach spaces, Studia Math. 89 (1988), 1-9.
- C. Finet and W. Schachermayer, Equivalent norms on separable Asplund spaces, ibid. 92 (1989), 275-283.
- P. Flinn, On a theorem of N. J. Kalton and G. V. Wood concerning 1-complemented subspaces of spaces having an orthonormal basis, in: Texas Functional Analysis Seminar 1983-1984, Longhorn Notes, Univ. of Texas Press, Austin, Tex., 1984, 135-144.
- N. Ghoussoub, G. Godefroy, B. Maurey and W. Schachermayer, Some topological and geometrical structures in Banach spaces, Mem. Amer. Math. Soc. 378 (1987).
- N. Ghoussoub and W. B. Johnson, Factoring operators through Banach lattices not containing C(0,1), Math. Z. 194 (1987), 153-171.
- G. Godefroy, Espaces de Banach: Existence et unicité de certains préduaux, Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 87-105.
- G. Godefroy, Points de Namioka, espaces normants, applications à la théorie isométrique de la dualité, Israel J. Math. 38 (1981), 209-220.
- G. Godefroy, Parties admissibles d'un espace de Banach. Applications, Ann. Sci. Ecole Norm. Sup. 16 (1983), 109-122.
- G. Godefroy, Sous-espaces bien disposés de
-applications, Trans. Amer. Math. Soc. 286 (1984), 227-249. - G. Godefroy and N. J. Kalton, The ball topology and its applications, in: Contemp. Math. 85, Amer. Math. Soc., 1989, 195-237.
- G. Godefroy and D. Li, Banach spaces which are M-ideals in their bidual have property (u), Ann. Inst. Fourier (Grenoble) 39 (2) (1989), 361-371.
- G. Godefroy and D. Li, Some natural families of M-ideals, Math. Scand. 66 (1990), 249-263.
- G. Godefroy and F. Lust-Piquard, Some applications of geometry of Banach spaces to harmonic analysis, Colloq. Math. 60//61 (1990), 443-456.
- G. Godefroy and P. Saab, Weakly unconditionally convergent series in M-ideals, Math. Scand. 64 (1989), 307-318.
- G. Godefroy and P. D. Saphar, Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), 672-695.
- B. V. Godun, Unconditional bases and spanning basic sequences, Izv. Vyssh. Uchebn. Zaved. Mat. 24 (1980), 69-72.
- B. V. Godun, Equivalent norms on non-reflexive Banach spaces, Soviet Math. Dokl. 265 (1982), 12-15.
- P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, to appear.
- P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264.
- R. Haydon, Some more characterizations of Banach spaces containing
, Math. Proc. Cambridge Philos. Soc. 80 (1976), 269-276. - R. Haydon and B. Maurey, On Banach spaces with strongly separable types, J. London Math. Soc. 33 (1986), 484-498.
- S. Heinrich and P. Mankiewicz, Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math. 73 (1982), 225-251.
- J. Hennefeld, M-ideals, HB-subspaces, and compact operators, Indiana Univ. Math. J. 28 (1979), 927-934.
- R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
- W. B. Johnson and M. Zippin, On subspaces of quotients of
and , Israel J. Math. 13 (1972), 311-316. - N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
- N. J. Kalton, Locally complemented subspaces and
-spaces for 0 < p < 1, Math. Nachr. 115 (1984), 71-97. - N. J. Kalton, M-ideals of compact operators, Illinois J. Math., to appear.
- N. J. Kalton and G. V. Wood, Orthonormal systems in Banach spaces and their applications, Math. Proc. Cambridge Philos. Soc. 79 (1976), 493-510.
- H. Knaust and E. Odell, On
sequences in Banach spaces, Israel J. Math. 67 (1989), 153-169. - D. Li, Quantitative unconditionality of Banach spaces E for which K(E) is an M-ideal in ℒ(E), Studia Math. 96 (1990), 39-50.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. 1, Sequence Spaces, Springer, Berlin 1977.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. II, Function Spaces, Springer, Berlin 1979.
- B. Maurey, Types and
-subspaces, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. of Texas Press, Austin, Tex., 1983, 123-137. - E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing
, Israel J. Math. 20 (1975), 375-384. - A. Pełczyński and P. Wojtaszczyk, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math. 40 (1971), 91-108.
- C. J. Read, Different forms of the approximation property, to appear.
- H. P. Rosenthal, A characterization of
and some remarks concerning the Grothendieck property, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. of Texas Press, Austin, Tex., 1983, 95-108. - H. P. Rosenthal, On one-complemented subspaces of complex Banach spaces with a one-unconditional basis, according to Kalton and Wood, GAFA, Israel Seminar, IX, 1983-1984.
- H. H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin 1974.
- A. Sersouri, Propriété (u) dans les espaces d'opérateurs, Bull. Polish Acad. Sci. 36 (1988), 655-659.
- B. Sims and D. Yost, Linear Hahn-Banach extension operators, Proc. Edinburgh Math. Soc. 32 (1989), 53-57.
- A. M. Sinclair, The norm of a hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450.
- I. Singer, Bases in Banach Spaces, Vol. II, Springer, Berlin 1981.
- M. Takesaki, On the conjugate space of operator algebra, Tôhoku Math. J. 10 (1958), 194-203.
- M. Talagrand, Dual Banach lattices and Banach lattices with the Radon-Nikodym property, Israel J. Math. 38 (1981), 46-50.
- D. Werner, Remarks on M-ideals of compact operators, Quart. J. Math. Oxford 41 (1990), 501-508.
- M. Zippin, Banach spaces with separable duals, Trans. Amer. Math. Soc. 310 (1988), 371-379.