ArticleOriginal scientific text

Title

Maximal functions related to subelliptic operators invariant under an action of a nilpotent Lie group

Authors 1

Affiliations

  1. Institute of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

On the domain Ωa={(x,b):xN,b+,b>a}, where N is a simply connected nilpotent Lie group and a ≥ 0, certain N-invariant second order subelliptic operators L are considered. Every bounded L-harmonic function F is the Poisson integral F(x,b)=fμ̌ab(x) for an fL(N). The main theorem of the paper asserts that under some assumptions the maximal functions M1f(x)=ba+1|fμ̌ab(x)|, !$!M_2f(x) = sup_{a

Bibliography

  1. [B] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1) (1969), 277-304.
  2. [D] E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, Studia Math. 89 (1988), 169-196.
  3. [DH] E. Damek and A. Hulanicki, Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group, ibid. 101 (1991), 34-68.
  4. [FKP] R. A. Fefferman, C. E. Kenig and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. 134 (1991), 65-124.
  5. [FS] G. B. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982.
  6. [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983.
  7. [HS] W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231-236.
  8. [H1] A. Hulanicki, Subalgebra of L1(G) associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287.
  9. [H2] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101.
  10. [HJ] A. Hulanicki and J. Jenkins, Nilpotent groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244.
  11. [Ko] J. J. Kohn, Pseudo-differential operators and non-elliptic problems, in: Pseudo-differential Operators, CIME Conference, Stresa 1968, Ed. Cremonese, Roma 1969, 157-165.
  12. [St] E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals, Invent. Math. 74 (1983), 63-83.
  13. [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
  14. [S] D. Stroock, Lectures on Stochastic Analysis: Diffusion Theory, Cambridge Univ. Press, 1987.
  15. [SV] D. Stroock and S. R. Varadhan, Multidimensional Diffusion Processes, Springer, 1979.
  16. [T] J. C. Taylor, Skew products, regular conditional probabilities and stochastic differential equations: a remark, preprint.
  17. [Z] J. Zienkiewicz, A maximal operator related to a nonsymmetric semigroup generated by a left-invariant operator on a Lie group, submitted to Studia Math.
Pages:
239-264
Main language of publication
English
Received
1991-09-11
Accepted
1992-09-23
Published
1992
Exact and natural sciences