ArticleOriginal scientific text

Title

Conjugate martingale transforms

Authors 1

Affiliations

  1. Department of Numerical Analysis, Eötvös L. University, Bogdánfy U. 10/b, H-1117 Budapest, Hungary

Abstract

Characterizations of H₁, BMO and VMO martingale spaces generated by bounded Vilenkin systems via conjugate martingale transforms are studied.

Bibliography

  1. R. Bañuelos, A note on martingale transforms and Ap-weights, Studia Math. 85 (1987), 125-135.
  2. D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42.
  3. D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249-304.
  4. J. A. Chao, Conjugate characterizations of H¹ dyadic martingales, Math. Ann. 240 (1979), 63-67.
  5. J. A. Chao, Hardy spaces on regular martingales, in: Martingale Theory in Harmonic Analysis and Banach Spaces, Lecture Notes in Math. 939, Springer, Berlin 1982, 18-28.
  6. J. A. Chao, Hp spaces of conjugate systems on local fields, Studia Math. 49 (1974), 267-287.
  7. J. A. Chao, Lusin area functions on local fields, Pacific J. Math. 59 (1975), 383-390.
  8. J. A. Chao and J. Janson, A note on H¹ q-martingales, ibid. 97 (1981), 307-317.
  9. J. A. Chao and M. H. Taibleson, A sub-regularity inequality for conjugate systems on local fields, Studia Math. 46 (1973), 249-257.
  10. J. A. Chao and M. H. Taibleson, Generalized conjugate systems on local fields, ibid. 64 (1979), 213-225.
  11. C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-194.
  12. A. M. Garsia, Martingale Inequalities. Seminar Notes on Recent Progress, Math. Lecture Note Ser., Benjamin, New York 1973.
  13. R. F. Gundy, Inégalités pour martingales à un et deux indices: L'espace Hp, in: Ecole d'Eté de Probabilités de Saint-Flour VIII-1978, Lecture Notes in Math. 774, Springer, Berlin 1980, 251-331.
  14. R. F. Gundy and N. T. Varopoulos, A martingale that occurs in harmonic analysis, Ark. Mat. 14 (1976), 179-187.
  15. S. Janson, Characterizations of H¹ by singular integral transforms on martingales and n, Math. Scand. 41 (1977), 140-152.
  16. S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), 189-196.
  17. J. Neveu, Discrete-Parameter Martingales, North-Holland, 1971.
  18. F. Schipp, On Lp-norm convergence of series with respect to product systems, Anal. Math. 2 (1976), 49-64.
  19. F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Akadémiai Kiadó, 1990.
  20. P. Simon, Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 28 (1985), 87-101.
  21. P. Simon, On the concept of a conjugate function, in: Fourier Analysis and Approximation Theory, Budapest 1978, Colloq. Math. Soc. J. Bolyai 1, 747-755.
  22. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
  23. M. H. Taibleson, Fourier Analysis on Local Fields, Princeton Univ. Press, Princeton, N.J., 1975.
  24. A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York 1986.
  25. A. Uchiyama, A constructive proof of the Fefferman-Stein decomposition of BMO on simple martingales, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Chicago 1981, W. Beckner, A. Calderón, R. Fefferman and P. W. Jones (eds.), Wadsworth, Belmont, Calif., 1983, 495-505.
  26. N. Ya. Vilenkin, On a class of complete orthonormal systems, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 363-400.
  27. F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233.
  28. F. Weisz, Martingale Hardy spaces for 0 < p ≤ 1, Probab. Theory Related Fields 84 (1990), 361-376.
Pages:
207-220
Main language of publication
English
Received
1992-06-19
Published
1992
Exact and natural sciences