ArticleOriginal scientific text
Title
Hausdorff and conformal measures for expanding piecewise monotonic maps of the interval
Authors 1
Affiliations
- Institut für Mathematik, Universität Wien,, Strudlhofgasse 4, A-1090 Wien, Austria
Abstract
Let A be a topologically transitive invariant subset of an expanding piecewise monotonic map on [0,1] with the Darboux property. We investigate existence and uniqueness of conformal measures on A and relate Hausdorff and conformal measures on A to each other.
Bibliography
- M. Denker and M. Urbański, On the existence of conformal measures, Trans. Amer. Math. Soc. 328 (1991), 563-587.
- M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc. 43 (1991), 107-118.
- M. Denker and M. Urbański, Hausdorff measures on Julia sets of subexpanding rational maps, preprint, 1990.
- K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985.
- F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34 (1979), 213-237.
- F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II, ibid. 38 (1981), 107-115.
- F. Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Related Fields 72 (1986), 359-386.
- F. Hofbauer, Hausdorff dimension and pressure for piecewise monotonic maps of the interval, J. London Math. Soc., to appear.
- P. Raith, Hausdorff dimension for piecewise monotonic maps, Studia Math. 94 (1989), 17-33.
- P. Walters, An Introduction to Ergodic Theory, Springer, 1982.