ArticleOriginal scientific text

Title

Hausdorff and conformal measures for expanding piecewise monotonic maps of the interval

Authors 1

Affiliations

  1. Institut für Mathematik, Universität Wien,, Strudlhofgasse 4, A-1090 Wien, Austria

Abstract

Let A be a topologically transitive invariant subset of an expanding piecewise monotonic map on [0,1] with the Darboux property. We investigate existence and uniqueness of conformal measures on A and relate Hausdorff and conformal measures on A to each other.

Bibliography

  1. M. Denker and M. Urbański, On the existence of conformal measures, Trans. Amer. Math. Soc. 328 (1991), 563-587.
  2. M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc. 43 (1991), 107-118.
  3. M. Denker and M. Urbański, Hausdorff measures on Julia sets of subexpanding rational maps, preprint, 1990.
  4. K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985.
  5. F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34 (1979), 213-237.
  6. F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II, ibid. 38 (1981), 107-115.
  7. F. Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Related Fields 72 (1986), 359-386.
  8. F. Hofbauer, Hausdorff dimension and pressure for piecewise monotonic maps of the interval, J. London Math. Soc., to appear.
  9. P. Raith, Hausdorff dimension for piecewise monotonic maps, Studia Math. 94 (1989), 17-33.
  10. P. Walters, An Introduction to Ergodic Theory, Springer, 1982.
Pages:
191-206
Main language of publication
English
Received
1991-10-01
Published
1992
Exact and natural sciences