ArticleOriginal scientific text
Title
Factors of ergodic group extensions of rotations
Authors 1
Affiliations
- Institute of Mathematics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Abstract
Diagonal metric subgroups of the metric centralizer of group extensions are investigated. Any diagonal compact subgroup Z of is determined by a compact subgroup Y of a given metric compact abelian group X, by a family , of group automorphisms and by a measurable function f:X → G (G a metric compact abelian group). The group Z consists of the triples , y ∈ Y, where , x ∈ X.
Keywords
group extension
Bibliography
- L. Baggett, On circle-valued cocycles of an ergodic measure-preserving transformation, Israel J. Math. 61 (1988), 29-38.
- A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynamical Systems 7 (1987), 531-557.
- M. Lemańczyk and P. Liardet, Coalescence of Anzai skew products, preprint.
- M. Lemańczyk and M. K. Mentzen, Compact subgroups in the centralizer of natural factors of an ergodic group extension of a rotation determine all factors, Ergodic Theory Dynamical Systems 10 (1990), 763-776.
- D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. (2) 19 (1979), 129-136.
- W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113.
- M. Rychlik, The Wiener lemma and cocycles, Proc. Amer. Math. Soc. 104 (1988), 932-933.
- W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2, Trans. Amer. Math. Soc. 140 (1969), 1-33.