ArticleOriginal scientific text
Title
Points fixes et théorèmes ergodiques dans les espaces L¹(E)
Authors 1
Affiliations
- Equipe d'Analyse, Université Paris VI, Boîte 186, 4, Place Jussieu, F-75252 Paris Cedex 05, France
Abstract
We prove that for each linear contraction T : X → X (∥T∥ ≤ 1), the subspace F = {x ∈ X : Tx = x} of fixed points is 1-complemented, where X is a suitable subspace of L¹(E*) and E* is a separable dual space such that the weak and weak* topologies coincide on the unit sphere. We also prove some related fixed point results.
Bibliography
- [Als] D. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), 423-424.
- [A-N] E. Asplund and I. Namioka, A geometric proof of Ryll-Nardzewski's fixed point theorem, Bull. Amer. Math. Soc. 73 (1967), 443-445.
- [Bal.1] E. J. Balder, Infinite-dimensional extension of a theorem of Komlós, Probab. Theory Related Fields 81 (1989), 185-188.
- [Bal.2] E. J. Balder, On uniformly bounded sequences in Orlicz spaces, Bull. Austral. Math. Soc. 41 (1990), 495-502.
- [Bal.3] E. J. Balder, New sequential compactness results for spaces of scalarly integrable functions, J. Math. Anal. Appl. 151 (1990), 1-16.
- [Beh] E. Behrends, M-Structure and the Banach-Stone Theorem, Lecture Notes in Math. 736, Springer, Berlin 1979.
- [Bes.1] M. Besbes, Points fixes des contractions définies sur un convexe
-fermé de L¹, C. R. Acad. Sci. Paris Sér. I 311 (1990), 243-246. - [Bes.2] M. Besbes, Complémentation de l'ensemble des points fixes d'une contraction, preprint, 1990.
- [B-D-D-L] M. Besbes, S. Dilworth, P. Dowling and C. Lennard, New convexity and fixed point properties in Hardy and Lebesgue-Bochner spaces, preprint.
- [Bru] R. Bruck, Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251-262.
- [Day] M. M. Day, Normed Linear Spaces, Springer, Berlin 1973.
- [Die] J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin 1984.
- [Gar] D. J. H. Garling, Subsequence principles for vector-valued random variables, Math. Proc. Cambridge Philos. Soc. 86 (1979), 301-311.
- [Gin] E. Giner, Espaces intégraux de type Orlicz, thèse, Université des Sciences et Techniques du Languedoc, Perpignan 1977.
- [God] G. Godefroy, Sous-espaces bien disposés de L¹. Applications, Trans. Amer. Math. Soc. 286 (1984), 227-249.
- [Hof] L. D. Hoffmann, Pseudo-uniform convexity of H¹ in several variables, Proc. Amer. Math. Soc. 26 (1970), 609-614.
- [Huf] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749.
- [Kak] S. Kakutani, Two fixed point theorems concerning bicompact convex sets, Proc. Imperial Acad. Tokyo 14 (1938), 242-245.
- [K-T] M. A. Khamsi and P. Turpin, Fixed points of nonexpansive mappings in Banach lattices, Proc. Amer. Math. Soc. 105 (1) (1989), 102-110.
- [Kom] J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217-229.
- [Kre.1] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin 1985.
- [Kre.2] U. Krengel, On the global limit behaviour of Markov chains and of general nonsingular Markov processes, Z. Wahrsch. Verw. Gebiete 6 (1966), 302-316.
- [Len] C. Lennard, A new convexity property that implies a fixed point property for L₁, Studia Math. 100 (1991), 95-108.
- [Lim] T.-C. Lim, Asymptotic centers and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980), 135-143.
- [Mar] A. Markov, Quelques théorèmes sur les ensembles abéliens, Dokl. Akad. Nauk SSSR (N.S.) 10 (1936), 311-313.
- [Maz] P. Mazet, manuscrit non publié.
- [Opi] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.