ArticleOriginal scientific text

Title

A characterization of maximal regular ideals in lmc algebras

Authors 1

Affiliations

  1. Mathematical Institute, University of Athens, Panepistimiopolis, Athens 157 84, Greece

Abstract

A question of Warner and Whitley concerning a nonunital version of the Gleason-Kahane-Żelazko theorem is considered in the context of nonnormed topological algebras. Among other things it is shown that a closed hyperplane M of a commutative symmetric F*-algebra E with Lindelöf Gel'fand space is a maximal regular ideal iff each element of M belongs to some closed maximal regular ideal of E.

Keywords

symmetric lmc*-algebra, LFQ-algebra, maximal ideal space, Lindelöf space

Bibliography

  1. R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banach Modules, Springer, Berlin 1979.
  2. M. Fragoulopoulou, An Introduction to the Representation Theory of Topological *-Algebras, Schriftenreihe Math. Inst. Univ. Münster 48, 1988.
  3. M. Fragoulopoulou, Symmetric topological *-algebras, II, in: Trends in Functional Analysis and Approximation Theory, Proc. Maratea 1989, 279-288.
  4. M. Fragoulopoulou, Uniqueness of topology for semisimple LFQ-algebras, Proc. Amer. Math. Soc., to appear.
  5. A. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171-172.
  6. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer, Berlin 1963.
  7. J. Horváth, Topological Vector Spaces and Distributions, Vol. I, Addison-Wesley, Reading, Mass., 1966.
  8. H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart 1981.
  9. J. P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343.
  10. J. L. Kelley, General Topology, Springer, New York 1955.
  11. G. Lumer, Bochner's theorem, states and the Fourier transforms of measures, Studia Math. 46 (1973), 135-140.
  12. A. Mallios, Topological Algebras. Selected Topics, North-Holland, Amsterdam 1966.
  13. G. Maltese and R. Wille-Fier, A characterization of homomorphisms in certain Banach involution algebras, Studia Math. 89 (1988),133-143.
  14. E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952) (reprinted 1968).
  15. M. Roitman and Y. Sternfeld, When is a linear functional multiplicative?, Trans. Amer. Math. Soc. 267 (1981), 111-124.
  16. C. R. Warner and R. Whitley, A characterization of regular maximal ideals, Pacific J. Math. 30 (1969), 277-281.
  17. W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83-85.
  18. W. Żelazko, On multiplicative linear functionals, Colloq. Math. 28 (1973), 251-253.
Pages:
41-49
Main language of publication
English
Received
1991-08-12
Accepted
1992-02-10
Published
1992
Exact and natural sciences