ArticleOriginal scientific text
Title
A characterization of maximal regular ideals in lmc algebras
Authors 1
Affiliations
- Mathematical Institute, University of Athens, Panepistimiopolis, Athens 157 84, Greece
Abstract
A question of Warner and Whitley concerning a nonunital version of the Gleason-Kahane-Żelazko theorem is considered in the context of nonnormed topological algebras. Among other things it is shown that a closed hyperplane M of a commutative symmetric F*-algebra E with Lindelöf Gel'fand space is a maximal regular ideal iff each element of M belongs to some closed maximal regular ideal of E.
Keywords
symmetric lmc*-algebra, LFQ-algebra, maximal ideal space, Lindelöf space
Bibliography
- R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banach Modules, Springer, Berlin 1979.
- M. Fragoulopoulou, An Introduction to the Representation Theory of Topological *-Algebras, Schriftenreihe Math. Inst. Univ. Münster 48, 1988.
- M. Fragoulopoulou, Symmetric topological *-algebras, II, in: Trends in Functional Analysis and Approximation Theory, Proc. Maratea 1989, 279-288.
- M. Fragoulopoulou, Uniqueness of topology for semisimple LFQ-algebras, Proc. Amer. Math. Soc., to appear.
- A. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171-172.
- E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer, Berlin 1963.
- J. Horváth, Topological Vector Spaces and Distributions, Vol. I, Addison-Wesley, Reading, Mass., 1966.
- H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart 1981.
- J. P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343.
- J. L. Kelley, General Topology, Springer, New York 1955.
- G. Lumer, Bochner's theorem, states and the Fourier transforms of measures, Studia Math. 46 (1973), 135-140.
- A. Mallios, Topological Algebras. Selected Topics, North-Holland, Amsterdam 1966.
- G. Maltese and R. Wille-Fier, A characterization of homomorphisms in certain Banach involution algebras, Studia Math. 89 (1988),133-143.
- E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952) (reprinted 1968).
- M. Roitman and Y. Sternfeld, When is a linear functional multiplicative?, Trans. Amer. Math. Soc. 267 (1981), 111-124.
- C. R. Warner and R. Whitley, A characterization of regular maximal ideals, Pacific J. Math. 30 (1969), 277-281.
- W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83-85.
- W. Żelazko, On multiplicative linear functionals, Colloq. Math. 28 (1973), 251-253.