ArticleOriginal scientific text

Title

On the distribution function of the majorant of ergodic means

Authors 1

Affiliations

  1. A. Razmadze Mathematical Institute, Georgian Academy of Sciences, Rukhadze 1, 380093 Tbilisi, Georgia

Abstract

Let T be a measure-preserving ergodic transformation of a measure space (X,,μ) and, for f ∈ L(X), let f=N{1N}m=0N-1fTm. In this paper we mainly investigate the question of whether (i) ʃa|μ(f>t)-{1t}ʃ(f>t)fdμ|dt< and whether (ii) ʃa|μ(f>t)-{1t}ʃ(f>t)fdμ|dt< for some a > 0. It is proved that (i) holds for every f ≥ 0. (ii) holds if f ≥ 0 and f log log (f + 3) ∈ L(X) or if μ(X) = 1 and the random variables fTm are independent. Related inequalities are proved. Some examples and counterexamples are constructed. Several known results are obtained as corollaries.

Bibliography

  1. P. Billingsley, Ergodic Theory and Information, Wiley, 1965.
  2. B. Davis, On the integrability of the ergodic maximal function, Studia Math. 73 (1982), 153-167.
  3. B. Davis, Stopping rules for Snn, and the class L log L, Z. Warsch. Verw. Gebiete 17 (1971), 147-150.
  4. J. L. Doob, Stochastic Processes, Wiley, 1953.
  5. L. Epremidze, On the distribution function of the majorant of ergodic means, Seminar Inst. Prikl. Mat. Tbilis. Univ. 3 (2) (1988), 89-92 (in Russian).
  6. A. M. Garsia, A simple proof of E. Hopf's maximal ergodic theorem, J. Math. Mech. 14 (1965), 381-382.
  7. R. L. Jones, New proofs for the maximal ergodic theorem and the Hardy-Littlewood maximal theorem, Proc. Amer. Math. Soc. 87 (1983), 681-684.
  8. B. J. McCabe and L. A. Shepp, On the supremum of Snn, Ann. Math. Statist. 41 (1970), 2166-2168.
  9. J. Neveu, The filling scheme and the Chacon-Ornstein theorem, Israel J. Math. 33 (1979), 368-377.
  10. D. Ornstein, A remark on the Birkhoff ergodic theorem, Illinois J. Math. 15 (1971), 77-79.
  11. K. E. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983.
  12. F. Riesz, Sur la théorie ergodique, Comment. Math. Helv. 17 (1944/45), 221-239.
  13. R. Sato, On the ratio maximal function for an ergodic flow, Studia Math. 80 (1984), 129-139.
  14. O. Tsereteli, On the distribution function of the conjugate function of a nonnegative Borel measure, Trudy Tbilis. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 89 (1989), 60-82 (in Russian).
  15. Z. Vakhania, On the ergodic theorems of N. Wiener and D. Ornstein, Soobshch. Akad. Nauk Gruzin. SSR 88 (1977), 281-284 (in Russian).
  16. Z. Vakhania, On the integrability of the majorant of ergodic means, Trudy Vychisl. Tsentra Akad. Nauk Gruzin. SSR 29 (1990), 43-76 (in Russian).
Pages:
1-15
Main language of publication
English
Received
1989-07-19
Accepted
1991-07-05
Published
1992
Exact and natural sciences