ArticleOriginal scientific text
Title
On the distribution function of the majorant of ergodic means
Authors 1
Affiliations
- A. Razmadze Mathematical Institute, Georgian Academy of Sciences, Rukhadze 1, 380093 Tbilisi, Georgia
Abstract
Let T be a measure-preserving ergodic transformation of a measure space (X,,μ) and, for f ∈ L(X), let
.
In this paper we mainly investigate the question of whether
(i)
and whether
(ii)
for some a > 0. It is proved that (i) holds for every f ≥ 0. (ii) holds if f ≥ 0 and f log log (f + 3) ∈ L(X) or if μ(X) = 1 and the random variables are independent.
Related inequalities are proved. Some examples and counterexamples are constructed. Several known results are obtained as corollaries.
Bibliography
- P. Billingsley, Ergodic Theory and Information, Wiley, 1965.
- B. Davis, On the integrability of the ergodic maximal function, Studia Math. 73 (1982), 153-167.
- B. Davis, Stopping rules for
, and the class L log L, Z. Warsch. Verw. Gebiete 17 (1971), 147-150. - J. L. Doob, Stochastic Processes, Wiley, 1953.
- L. Epremidze, On the distribution function of the majorant of ergodic means, Seminar Inst. Prikl. Mat. Tbilis. Univ. 3 (2) (1988), 89-92 (in Russian).
- A. M. Garsia, A simple proof of E. Hopf's maximal ergodic theorem, J. Math. Mech. 14 (1965), 381-382.
- R. L. Jones, New proofs for the maximal ergodic theorem and the Hardy-Littlewood maximal theorem, Proc. Amer. Math. Soc. 87 (1983), 681-684.
- B. J. McCabe and L. A. Shepp, On the supremum of
, Ann. Math. Statist. 41 (1970), 2166-2168. - J. Neveu, The filling scheme and the Chacon-Ornstein theorem, Israel J. Math. 33 (1979), 368-377.
- D. Ornstein, A remark on the Birkhoff ergodic theorem, Illinois J. Math. 15 (1971), 77-79.
- K. E. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983.
- F. Riesz, Sur la théorie ergodique, Comment. Math. Helv. 17 (1944/45), 221-239.
- R. Sato, On the ratio maximal function for an ergodic flow, Studia Math. 80 (1984), 129-139.
- O. Tsereteli, On the distribution function of the conjugate function of a nonnegative Borel measure, Trudy Tbilis. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 89 (1989), 60-82 (in Russian).
- Z. Vakhania, On the ergodic theorems of N. Wiener and D. Ornstein, Soobshch. Akad. Nauk Gruzin. SSR 88 (1977), 281-284 (in Russian).
- Z. Vakhania, On the integrability of the majorant of ergodic means, Trudy Vychisl. Tsentra Akad. Nauk Gruzin. SSR 29 (1990), 43-76 (in Russian).