Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
In 1970 C. W. Onneweer formulated a sufficient condition for a periodic W-continuous function to have a Walsh-Fourier series which converges uniformly to the function. In this paper we extend his results from single to double Walsh-Fourier series in a more general setting. We study the convergence of rectangular partial sums in $L^p$-norm for some 1 ≤ p ≤ ∞ over the unit square [0,1) × [0,1). In case p = ∞, by $L^p$ we mean $C_W$, the collection of uniformly W-continuous functions f(x, y), endowed with the supremum norm. As special cases, we obtain the extensions of the Dini-Lipschitz test and the Dirichlet-Jordan test for double Walsh-Fourier series.
Słowa kluczowe
Walsh-Paley system
W-continuity
moduli of continuity and smoothness
bounded variation in the sense of Hardy and Krause
generalized bounded variation
complementary functions in the sense of W. H. Young
rectangular partial sum
Dirichlet kernel
convergence in $L^p$-norm
uniform convergence Salem's test
Dini-Lipschitz test
Dirichlet-Jordan test
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
225-237
Opis fizyczny
Daty
wydano
1992
otrzymano
1991-07-31
Twórcy
autor
- Bolyai Institute, University of Szeged, Aradi Vértanúk Tere 1, 6720 Szeged, Hungary
Bibliografia
- [1] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414.
- [2] R. D. Getsadze, Convergence and divergence of multiple orthonormal Fourier series in C and L metrics, Soobshch. Akad. Nauk Gruzin. SSR 106 (1982), 489-491 (in Russian).
- [3] G. H. Hardy, On double Fourier series, Quart. J. Math. 37 (1906), 53-79.
- [4] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, 1934.
- [5] E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier's Series, Vol. 1, third edition, Cambridge Univ. Press, 1927; Dover, New York 1957.
- [6] F. Móricz, Approximation by double Walsh polynomials, Internat. J. Math. Math. Sci., to appear.
- [7] C. W. Onneweer, On uniform convergence for Walsh-Fourier series, Pacific J. Math. 34 (1970), 117-122.
- [8] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279.
- [9] R. Salem, Essais sur les séries trigonométriques, Actualités Sci. Indust. 862, Hermann, Paris 1940.
- [10] F. Schipp, W. R. Wade, and P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Akadémiai Kiadó, Budapest 1990.
- [11] J. L. Walsh, A closed set of normal orthogonal functions, Amer. J. Math. 55 (1923), 5-24.
- [12] L. C. Young, Sur une généralisation de la notion de variation de puissance p-ième bornée au sens de M. Wiener, et sur la convergence des séries de Fourier, C. R. Acad. Sci. Paris 204 (1937), 470-472.
- [13] A. Zygmund, Trigonometric Series, Vol. 1, Cambridge Univ. Press, 1959.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv102i3p225bwm