ArticleOriginal scientific text

Title

Uniqueness of unconditional bases of c0(lp), 0 < p < 1

Authors 1, 2

Affiliations

  1. Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211, U.S.A.
  2. Depto. Matemática e Informática, Universidad Pública de Navarra, C/Sadar, S/n, 31006 Pamplona, Spain.

Abstract

We prove that if 0 < p < 1 then a normalized unconditional basis of a complemented subspace of c0(lp) must be equivalent to a permutation of a subset of the canonical unit vector basis of c0(lp). In particular, c0(lp) has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for c0(l).

Bibliography

  1. A. Bonami, Ensembles Λ (p) dans le dual D, Ann. Inst. Fourier (Grenoble) 18 (2) (1968), 193-204.
  2. J. Bourgain, P. G. Casazza, J. Lindenstrauss and L. Tzafriri, Banach spaces with a unique unconditional basis, up to permutation, Mem. Amer. Math. Soc. 322 (1985).
  3. N. J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Cambridge Philos. Soc. 81 (1977), 253-278.
  4. N. J. Kalton, Banach envelopes of non-locally convex spaces, Canad. J. Math. 38 (1986), 65-86.
  5. N. J. Kalton, C. Leránoz and P. Wojtaszczyk, Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces, Israel J. Math. 72 (1990), 299-311.
  6. N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, London Math. Soc. Lecture Note Ser. 89, Cambridge University Press, 1985.
  7. C. Leránoz, Uniqueness of unconditional bases in quasi-Banach spaces, Ph.D. thesis, University of Missouri-Columbia, 1990.
  8. J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in p-spaces and their applications, Studia Math. 29 (1968), 275-326.
  9. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, Berlin 1979.
  10. J. Lindenstrauss and M. Zippin, Banach spaces with a unique unconditional basis, J. Funct. Anal. 3 (1969), 115-125.
  11. B. Maurey, Type et cotype dans les espaces munis de structures locales inconditionnelles, in: Sém. Maurey-Schwartz 1973-1974, Exposés 24-25, École Polytechnique, Paris.
Pages:
193-207
Main language of publication
English
Received
1990-08-20
Accepted
1991-09-20
Published
1992
Exact and natural sciences