ArticleOriginal scientific text

Title

On the multiplicity function of ergodic group extensions of rotations

Authors 1, 2, 2, 3

Affiliations

  1. Mathematics Department, Towson State University, Towson, Maryland 21204-7097, U.S.A.
  2. Institute of Mathematics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
  3. Université de Provence, Unité de Recherche Associée CNRS No. 225, Case 96, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France

Abstract

For an arbitrary set A ⊆ ℕ satisfying 1 ∈ A and lcm(m₁,m₂) ∈ A whenever m₁,m₂ ∈ A, an ergodic abelian group extension of a rotation for which the range of the multiplicity function equals A is constructed.

Bibliography

  1. O. N. Ageev, Dynamical systems with a Lebesgue component of even multiplicity in the spectrum, Mat. Sb. 136 (178) (1988), 307-319 (in Russian).
  2. S. Ferenczi and J. Kwiatkowski, Rank and spectral multiplicity function, this volume, 201-224.
  3. G. R. Goodson, On the spectral multiplicity of a class of finite rank transformations, Proc. Amer. Math. Soc. 93 (1985), 303-306.
  4. G. R. Goodson and M. Lemańczyk, On the rank of a class of bijective substitutions, Studia Math. 96 (1990), 219-230.
  5. A. B. Katok, Constructions in Ergodic Theory, Progr. Math., Birkhäuser, Boston, Mass., to appear.
  6. M. Keane, Generalized Morse sequences, Z. Wahrsch. Verw. Gebiete 10 (1968), 335-353.
  7. J. Kwiatkowski, Spectral isomorphism of Morse dynamical systems, Bull. Acad. Polon. Sci. 29 (1981), 105-114.
  8. J. Kwiatkowski and A. Sikorski, Spectral properties of G-symbolic Morse shifts, Bull. Soc. Math. France 115 (1987), 19-33.
  9. M. Lemańczyk, Toeplitz Z₂-extensions, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 1-43.
  10. J. C. Martin, Generalized Morse sequences on n symbols, Proc. Amer. Math. Soc. 54 (1976), 379-383.
  11. J. C. Martin, The structure of generalized Morse minimal sets on n symbols, Trans. Amer. Math. Soc. 232 (1977), 343-355.
  12. J. Mathew and M. G. Nadkarni, Measure preserving transformations whose spectra have a Lebesgue component of finite multiplicity, preprint.
  13. D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 19 (1979), 129-136.
  14. W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113.
  15. M. Queffélec, Contribution à l'étude spectrale de suites arithmétiques, Thèse, 1984.
  16. E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314.
  17. E. A. Robinson, Transformations with highly nonhomogeneous spectrum of finite multiplicity, Israel J. Math. 56 (1986), 75-88.
  18. E. A. Robinson, Spectral multiplicity for non-abelian Morse sequences, in: Lecture Notes in Math. 1342, Springer, 1988, 645-652.
  19. E. A. Robinson, Non-abelian extensions have nonsimple spectra, Compositio Math. 65 (1988), 155-170.
Pages:
157-174
Main language of publication
English
Received
1991-08-08
Published
1992
Exact and natural sciences