ArticleOriginal scientific text

Title

Oscillatory singular integrals on weighted Hardy spaces

Authors 1, 2

Affiliations

  1. Department of Mathematics, Beijing University, 100871 Beijing, P.R. China
  2. Department of Computer Science, Concordia University, 1455 de Maisonneuve Blvd. W., Montréal, Québec, Canada, H3G 1MB

Abstract

Let Tf(x)=p.v.ʃ¹eiP(x-y)f(y)x-ydy, where P is a real polynomial on ℝ. It is proved that T is bounded on the weighted H¹(wdx) space with w ∈ A₁.

Keywords

oscillatory singular integrals, H¹ space, A₁ condition

Bibliography

  1. S. Chanillo and M. Christ, Weak (1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-157.
  2. R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
  3. J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116 [Notas Mat. 104], North-Holland, Amsterdam 1985.
  4. Y. Hu, A weighted norm inequality for oscillatory singular integrals, in: Lecture Notes in Math., to appear.
  5. Y. Hu, Weighted Lp estimates for oscillatory integrals, preprint.
  6. D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms I, Acta Math. 157 (1986), 99-157.
  7. F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194.
  8. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
  9. E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.
  10. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1970.
  11. R. Strichartz, Singular integrals supported on submanifolds, Studia Math. 74 (1982), 137-151.
  12. J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, 1989.
  13. A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, Orlando, Fla., 1986.
  14. A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, London 1959.
Pages:
145-156
Main language of publication
English
Received
1991-07-15
Published
1992
Exact and natural sciences