ArticleOriginal scientific text
Title
Oscillatory singular integrals on weighted Hardy spaces
Authors 1, 2
Affiliations
- Department of Mathematics, Beijing University, 100871 Beijing, P.R. China
- Department of Computer Science, Concordia University, 1455 de Maisonneuve Blvd. W., Montréal, Québec, Canada, H3G 1MB
Abstract
Let
,
where P is a real polynomial on ℝ. It is proved that T is bounded on the weighted H¹(wdx) space with w ∈ A₁.
Keywords
oscillatory singular integrals, H¹ space, A₁ condition
Bibliography
- S. Chanillo and M. Christ, Weak (1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-157.
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
- J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116 [Notas Mat. 104], North-Holland, Amsterdam 1985.
- Y. Hu, A weighted norm inequality for oscillatory singular integrals, in: Lecture Notes in Math., to appear.
- Y. Hu, Weighted
estimates for oscillatory integrals, preprint. - D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms I, Acta Math. 157 (1986), 99-157.
- F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194.
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
- E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.
- E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1970.
- R. Strichartz, Singular integrals supported on submanifolds, Studia Math. 74 (1982), 137-151.
- J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, 1989.
- A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, Orlando, Fla., 1986.
- A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, London 1959.