ArticleOriginal scientific text

Title

A weighted Plancherel formula II. The case of the ball

Authors 1

Affiliations

  1. Matematiska Institutionen, Stockholms Universitet, Box 6701, S-113 85 Stockholm, Sweden

Abstract

The group SU(1,d) acts naturally on the Hilbert space L²(Bdμα)(α>-1), where B is the unit ball of d and dμα the weighted measure (1-|z|²)αdm(z). It is proved that the irreducible decomposition of the space has finitely many discrete parts and a continuous part. Each discrete part corresponds to a zero of the generalized Harish-Chandra c-function in the lower half plane. The discrete parts are studied via invariant Cauchy-Riemann operators. The representations on the discrete parts are equivalent to actions on some holomorphic tensor fields.

Keywords

Plancherel formula, Harish-Chandra c-function, reproducing kernel, orthogonal polynomial, invariant Cauchy-Riemann operator

Bibliography

  1. P. Appell et J. Kampé de Fériet, Fonctions hypergéometriques et hypersphériques, Polynomes d'Hermite, Gauthier-Villars, Paris 1926.
  2. J. Arazy, S. Fisher and J. Peetre, Membership in the Schatten-von Neumann classes and Hankel operators on Bergman space, J. London Math. Soc., to appear.
  3. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vols. 1, 2, McGraw-Hill, New York 1953.
  4. I. M. Gel'fand and M. I. Graev, The analogue of Plancherel's theorem for real unimodular groups, Dokl. Akad. Nauk SSSR 92 (1953), 461-464 (in Russian).
  5. Harish-Chandra, Plancherel formula for semi-simple Lie groups, Trans. Amer. Math. Soc. 76 (1954) 485-528.
  6. D. Hejhal, The Selberg Trace Formula for PSL(2,ℝ), Vol. 1, Lecture Notes in Math. 548; Vol. 2, Lecture Notes in Math. 1001, Springer, Berlin 1976, 1983.
  7. S. Helgason, Groups and Geometric Analysis, Academic Press, New York 1984.
  8. S. Helgason, Topics in Harmonic Analysis on Homogeneous Spaces, Progr. in Math. 13, Birkhäuser, Boston 1981.
  9. J. Peetre, L. Peng and G. Zhang, A weighted Plancherel formula I. The case of the disk. Applications to Hankel operators, technical report, Stockholm.
  10. W. Rudin, Function Theory in the Unit Ball of n, Springer, New York 1980.
  11. N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, Nauka, Moscow 1965 (in Russian).
Pages:
103-120
Main language of publication
English
Received
1991-02-27
Published
1992
Exact and natural sciences