ArticleOriginal scientific text
Title
A weighted Plancherel formula II. The case of the ball
Authors 1
Affiliations
- Matematiska Institutionen, Stockholms Universitet, Box 6701, S-113 85 Stockholm, Sweden
Abstract
The group SU(1,d) acts naturally on the Hilbert space , where B is the unit ball of and the weighted measure . It is proved that the irreducible decomposition of the space has finitely many discrete parts and a continuous part. Each discrete part corresponds to a zero of the generalized Harish-Chandra c-function in the lower half plane. The discrete parts are studied via invariant Cauchy-Riemann operators. The representations on the discrete parts are equivalent to actions on some holomorphic tensor fields.
Keywords
Plancherel formula, Harish-Chandra c-function, reproducing kernel, orthogonal polynomial, invariant Cauchy-Riemann operator
Bibliography
- P. Appell et J. Kampé de Fériet, Fonctions hypergéometriques et hypersphériques, Polynomes d'Hermite, Gauthier-Villars, Paris 1926.
- J. Arazy, S. Fisher and J. Peetre, Membership in the Schatten-von Neumann classes and Hankel operators on Bergman space, J. London Math. Soc., to appear.
- A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vols. 1, 2, McGraw-Hill, New York 1953.
- I. M. Gel'fand and M. I. Graev, The analogue of Plancherel's theorem for real unimodular groups, Dokl. Akad. Nauk SSSR 92 (1953), 461-464 (in Russian).
- Harish-Chandra, Plancherel formula for semi-simple Lie groups, Trans. Amer. Math. Soc. 76 (1954) 485-528.
- D. Hejhal, The Selberg Trace Formula for PSL(2,ℝ), Vol. 1, Lecture Notes in Math. 548; Vol. 2, Lecture Notes in Math. 1001, Springer, Berlin 1976, 1983.
- S. Helgason, Groups and Geometric Analysis, Academic Press, New York 1984.
- S. Helgason, Topics in Harmonic Analysis on Homogeneous Spaces, Progr. in Math. 13, Birkhäuser, Boston 1981.
- J. Peetre, L. Peng and G. Zhang, A weighted Plancherel formula I. The case of the disk. Applications to Hankel operators, technical report, Stockholm.
- W. Rudin, Function Theory in the Unit Ball of
, Springer, New York 1980. - N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, Nauka, Moscow 1965 (in Russian).