ArticleOriginal scientific text

Title

Linear topological properties of the Lumer-Smirnov class of the polydisc

Authors 1

Affiliations

  1. Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

Abstract

Linear topological properties of the Lumer-Smirnov class LN(Un) of the unit polydisc Un are studied. The topological dual and the Fréchet envelope are described. It is proved that LN(Un) has a weak basis but it is nonseparable in its original topology. Moreover, it is shown that the Orlicz-Pettis theorem fails for LN(Un).

Bibliography

  1. L. Drewnowski, Un théorème sur les opérateurs de (Γ), C. R. Acad. Sci. Paris Sér. A 281 (1975), 967-969.
  2. L. Drewnowski, Topological vector groups and the Nevanlinna class, preprint.
  3. E. Dubinsky, Basic sequences in stable finite type power series spaces, Studia Math. 68 (1980), 117-130.
  4. P. L. Duren, Theory of Hp Spaces, Academic Press, New York 1970.
  5. N. J. Kalton, Subseries convergence in topological groups and vector measures, Israel J. Math. 10 (1971), 402-412.
  6. N. J. Kalton, Basic sequences in F-spaces and their applications, Proc. Edinburgh Math. Soc. 19 (1974), 151-167.
  7. N. J. Kalton, Quotients of F-spaces, Glasgow Math. J. 19 (1978), 103-108.
  8. N. J. Kalton, The Orlicz-Pettis theorem, in: Contemp. Math. 2, Amer. Math. Soc., 1980, 91-100.
  9. N. J. Kalton, N. T. Peck and J. W. Roberts, An F-Space Sampler, London Math. Soc. Lecture Note Ser. 89, Cambridge Univ. Press, 1984.
  10. G. Lumer, Espaces de Hardy en plusieurs variables complexes, C. R. Acad. Sci. Paris 273 (1971), 151-154.
  11. M. Nawrocki, On the Orlicz-Pettis property in nonlocally convex F-spaces, Proc. Amer. Math. Soc. 101 (1987), 492-496.
  12. M. Nawrocki, Multipliers, linear functionals and the Fréchet envelope of the Smirnov class N(^n), Trans. Amer. Math. Soc. 322 (1990), 493-506.
  13. M. Nawrocki, The Fréchet envelopes of vector-valued Smirnov classes, Studia Math. 94 (1989), 61-75.
  14. M. Nawrocki, Linear functionals on the Smirnov class of the unit ball in n, Ann. Acad. Sci. Fenn. 14 (1989), 369-379.
  15. M. Nawrocki, The Orlicz-Pettis theorem fails for Lumer's Hardy spaces (LH)p(), Proc. Amer. Math. Soc. 109 (1990), 957-963.
  16. S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, and Reidel, Dordrecht 1984.
  17. L. A. Rubel, Internal-external factorization in Lumer's Hardy spaces, Adv. in Math. 50 (1983), 1-26.
  18. W. Rudin, Function Theory in Polydiscs, Benjamin, New York 1969.
  19. W. Rudin, Lumer's Hardy spaces, Michigan Math. J. 24 (1977), 1-5.
  20. W. Rudin, Function Theory in the Unit Ball of n, Grundlehren Math. Wiss. 241, Springer, 1980.
  21. J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202.
  22. J. H. Shapiro, Some F-spaces of harmonic functions for which the Orlicz-Pettis theorem fails, Proc. London Math. Soc. 50 (1985), 299-313.
  23. J. H. Shapiro, Linear topological properties of the harmonic Hardy spaces hp for 0 < p < 1, Illinois J. Math. 29 (1985), 311-339.
  24. J. H. Shapiro and A. L. Shields, Unusual topological properties of the Nevanlinna Class, Amer. J. Math. 97 (1975), 915-936.
  25. N. Yanagihara, The containing Fréchet space for the class N+, Duke Math. J. 40 (1973), 93-103.
  26. N. Yanagihara, Multipliers and linear functionals for the class N+, Trans. Amer. Math. Soc. 180 (1973), 449-461.
Pages:
87-102
Main language of publication
English
Received
1991-08-02
Published
1992
Exact and natural sciences