ArticleOriginal scientific text
Title
Linear topological properties of the Lumer-Smirnov class of the polydisc
Authors 1
Affiliations
- Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
Abstract
Linear topological properties of the Lumer-Smirnov class of the unit polydisc are studied. The topological dual and the Fréchet envelope are described. It is proved that has a weak basis but it is nonseparable in its original topology. Moreover, it is shown that the Orlicz-Pettis theorem fails for .
Bibliography
- L. Drewnowski, Un théorème sur les opérateurs de
, C. R. Acad. Sci. Paris Sér. A 281 (1975), 967-969. - L. Drewnowski, Topological vector groups and the Nevanlinna class, preprint.
- E. Dubinsky, Basic sequences in stable finite type power series spaces, Studia Math. 68 (1980), 117-130.
- P. L. Duren, Theory of
Spaces, Academic Press, New York 1970. - N. J. Kalton, Subseries convergence in topological groups and vector measures, Israel J. Math. 10 (1971), 402-412.
- N. J. Kalton, Basic sequences in F-spaces and their applications, Proc. Edinburgh Math. Soc. 19 (1974), 151-167.
- N. J. Kalton, Quotients of F-spaces, Glasgow Math. J. 19 (1978), 103-108.
- N. J. Kalton, The Orlicz-Pettis theorem, in: Contemp. Math. 2, Amer. Math. Soc., 1980, 91-100.
- N. J. Kalton, N. T. Peck and J. W. Roberts, An F-Space Sampler, London Math. Soc. Lecture Note Ser. 89, Cambridge Univ. Press, 1984.
- G. Lumer, Espaces de Hardy en plusieurs variables complexes, C. R. Acad. Sci. Paris 273 (1971), 151-154.
- M. Nawrocki, On the Orlicz-Pettis property in nonlocally convex F-spaces, Proc. Amer. Math. Soc. 101 (1987), 492-496.
- M. Nawrocki, Multipliers, linear functionals and the Fréchet envelope of the Smirnov class
, Trans. Amer. Math. Soc. 322 (1990), 493-506. - M. Nawrocki, The Fréchet envelopes of vector-valued Smirnov classes, Studia Math. 94 (1989), 61-75.
- M. Nawrocki, Linear functionals on the Smirnov class of the unit ball in
, Ann. Acad. Sci. Fenn. 14 (1989), 369-379. - M. Nawrocki, The Orlicz-Pettis theorem fails for Lumer's Hardy spaces
, Proc. Amer. Math. Soc. 109 (1990), 957-963. - S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, and Reidel, Dordrecht 1984.
- L. A. Rubel, Internal-external factorization in Lumer's Hardy spaces, Adv. in Math. 50 (1983), 1-26.
- W. Rudin, Function Theory in Polydiscs, Benjamin, New York 1969.
- W. Rudin, Lumer's Hardy spaces, Michigan Math. J. 24 (1977), 1-5.
- W. Rudin, Function Theory in the Unit Ball of
, Grundlehren Math. Wiss. 241, Springer, 1980. - J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202.
- J. H. Shapiro, Some F-spaces of harmonic functions for which the Orlicz-Pettis theorem fails, Proc. London Math. Soc. 50 (1985), 299-313.
- J. H. Shapiro, Linear topological properties of the harmonic Hardy spaces
for 0 < p < 1, Illinois J. Math. 29 (1985), 311-339. - J. H. Shapiro and A. L. Shields, Unusual topological properties of the Nevanlinna Class, Amer. J. Math. 97 (1975), 915-936.
- N. Yanagihara, The containing Fréchet space for the class
, Duke Math. J. 40 (1973), 93-103. - N. Yanagihara, Multipliers and linear functionals for the class
, Trans. Amer. Math. Soc. 180 (1973), 449-461.