ArticleOriginal scientific text
Title
On multilinear fractional integrals
Authors 1
Affiliations
- Department of Mathematics, Yale University, Box 2155, Yale Station, New Haven, Connecticut 06520, U.S.A.
Abstract
In , we prove boundedness for the multilinear fractional integrals where the 's are nonzero and distinct. We also prove multilinear versions of two inequalities for fractional integrals and a multilinear Lebesgue differentiation theorem.
Bibliography
- [A] D. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128 (1988), 385-398.
- [CM] S.-Y. A. Chang and D. E. Marshall, On a sharp inequality concerning the Dirichlet integral, Amer. J. Math. 107 (1985), 1015-1033.
- [CG] R. R. Coifman and L. Grafakos, Hardy space estimates for multilinear operators I, Rev. Mat. Iberoamericana, to appear.
- [G] L. Grafakos, Hardy space estimates for multilinear operators II, Rev. Mat. Iberoamericana, to appear.
- [HE] L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510.
- [HMT] J. A. Hempel, G. R. Morris and N. S. Trudinger, On the sharpness of a limiting case of the Sobolev embedding theorem, Bull. Austral. Math. Soc. 3 (1970), 369-373.
- [HI] I. I. Hirschman Jr., A convexity theorem for certain groups of transformations, J. Analyse Math. 2 (1953), 209-218.
- [M] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092.
- [ST] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
- [SWE] E. M. Stein and G. Weiss, An Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.
- [STR] R. S. Strichartz, A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J. 21 (1972), 841-842.
- [T] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.