ArticleOriginal scientific text
Title
Weighted inequalities for square and maximal functions in the plane
Authors 1, 1
Affiliations
- Departamento de Matemáticas, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
Abstract
We prove weighted inequalities for square functions of Littlewood-Paley type defined from a decomposition of the plane into sectors of lacunary aperture and for the maximal function over a lacunary set of directions. Some applications to multiplier theorems are also given.
Bibliography
- [Ca] A. Carbery, Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem, Ann. Inst. Fourier (Grenoble) 38 (1) (1988), 157-168.
- [CF] A. Córdoba and R. Fefferman, On the equivalence between the boundedness of certain classes of maximal and multiplier operators in Fourier analysis, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 423-425.
- [D] J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc., to appear.
- [GR] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam 1985.
- [K] D. Kurtz, Littlewood-Paley and multiplier theorems on weighted
spaces, Trans. Amer. Math. Soc. 259 (1980), 235-254. - [NSW] A. Nagel, E. Stein and S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), 1060-1062.
- [R] J. L. Rubio de Francia, Factorization theorems and
weights, Amer. J. Math. 106 (1984), 533-547. - [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N. J., 1970.
- [St] A. M. Stokolos, On certain classes of maximal and multiplier operators, preprint, Warszawa 1987.
- [Wa] D. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), 389-399.