ArticleOriginal scientific text
Title
The Littlewood-Paley function and φ-trans-form characterizations of a new Hardy space HK₂ associated with the Herz space
Authors 1, 2
Affiliations
- Department of Mathematics, Beijing Normal University, 100875 Beijing, P.R. China
- Department of Mathematics, Beijing Normal University, 100875 Beijing, P.R. China.
Abstract
We give a Littlewood-Paley function characterization of a new Hardy space HK₂ and its φ-transform characterizations in M. Frazier & B. Jawerth's sense.
Bibliography
- Y. Z. Chen and K. S. Lau, On some new classes of Hardy spaces, J. Funct. Anal. 84 (1989), 255-278.
- C. Fefferman and E. M. Stein,
spaces of several variables, Acta Math. 129 (1972), 137-193. - M. Frazier and B. Jawerth, The φ-transform and applications to distribution spaces, in: Function Spaces and Applications, Lecture Notes in Math. 1302, Springer, 1988, 223-246.
- M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
- J. García-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. (2) 39 (1989), 499-513.
- C. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transform, J. Math. Mech. 18 (1968), 283-324.
- D. S. Kurtz, Littlewood-Paley operators on BMO, Proc. Amer. Math. Soc. 99 (1987), 657-666.
- S. Lu and D. Yang, Some new Hardy spaces associated with the Herz spaces, to appear.
- A. Torchinsky, Real-variable Methods in Harmonic Analysis, Academic Press, New York 1986.
- D. Yang, The boundedness of generalized Littlewood-Paley functions, Chinese Ann. Math. Ser. A 12 (1991), 736-744.