ArticleOriginal scientific text

Title

On relations between operators on R^{N}, T^{N} and Z^{N}

Authors 1, 2

Affiliations

  1. Department Of Mathematics, Washington University, Box 1146, St. Louis, Missouri 63130, U.S.A.
  2. Departament de Matemátiques, Facultat de Ciences, Universitat Autónoma de Barcelona, 08193 Bellaterra (Barcelona), Spain

Abstract

We study different discrete versions of maximal operators and g-functions arising from a convolution operator on R. This allows us, in particular, to complete connections with the results of de Leeuw [L] and Kenig and Tomas [KT] in the setting of the groups R^{N}, T^{N} and Z^{N}.

Bibliography

  1. [A] I. Assani, The Wiener-Wintner property for the Helical Transform of the shift on [0,1]^Z, preprint.
  2. [AP] I. Assani and K. Petersen, The helical transform as a connection between ergodic theory and harmonic analysis, Trans. Amer. Math. Soc., to appear.
  3. [B] R. P. Boas, Entire Functions, Academic Press, 1954.
  4. [Bo] J. Bourgain, Pointwise ergodic theorems for arithmetic sets, IHES Publ. Math. 69 (1989), 5-45.
  5. [CP] J. Campbell and K. Petersen, The spectral measure and Hilbert transform of a measure-preserving transformation, Trans. Amer. Math. Soc. 313 (1989), 121-129.
  6. [C] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157.
  7. [CW] R. Coifman and G. Weiss, Transference methods in analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., 1977.
  8. [FS] R. Fefferman and F. Soria, The space Weak-H¹, Studia Math. 85 (1987), 1-16.
  9. [HL] G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), 81-116.
  10. [H] R. Hunt, On the convergence of Fourier series, in: Orthogonal Expansions and their Continuous Analogues, Proc. Conf. Edwardsville 1967, Southern Illinois Univ. Press, Carbondale, Ill., 1968, 235-255.
  11. [KT] C. Kenig and P. Thomas, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), 79-83.
  12. [L] K. de Leeuw, On L_p multipliers, Ann. of Math. 81 (1965), 364-379.
  13. [NRW1] A. Nagel, N. Rivière and S. Wainger, A maximal function associated to the curve (t,t²), Proc. Nat. Acad. Sci. U.S.A. 73 (5) (1976), 1416-1417.
  14. [NRW2] A. Nagel, On Hilbert transforms along curves. II, Amer. J. Math. 98 (2) (1976), 395-403.
  15. [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
  16. [SW] E. M. Stein and G. Weiss, Introduction to, Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
Pages:
165-182
Main language of publication
English
Received
1990-10-30
Published
1992
Exact and natural sciences