ArticleOriginal scientific text

Title

A strong mixing condition for second-order stationary random fields

Authors 1

Affiliations

  1. Department of Mathematics, University of Louisville, Louisville, Kentucky 40292, U.S.A.

Abstract

Let {Xmn} be a second-order stationary random field on Z². Let ℳ(L) be the linear span of {Xmn:m0,nZ}, and ℳ(R_N) the linear span of {Xmn:mN,nZ}. Spectral criteria are given for the condition limNcN=0, where cN is the cosine of the angle between ℳ(L) and (RN).

Keywords

stationary random field, prediction theory, strong mixing

Bibliography

  1. R. Cheng, The spectral measure of a regular stationary random field with the weak or strong commutation property, preprint.
  2. R. Cheng, Strong mixing in stationary fields, Ph.D. dissertation, University of Virginia, 1989.
  3. P. L. Duren, Theory of Hp Spaces, Academic Press, New York 1970.
  4. H. Dym and H. P. McKean, Gaussian Processes, Function Theory, and the Inverse Spectral Problem, Academic Press, New York 1976.
  5. U. Grenander and G. Szegö, Toeplitz Forms and Their Application, University of California Press, 1958.
  6. E. Hayashi, The spectral density of a strongly mixing stationary Gaussian process, Pacific J. Math. 96 (1981), 343-359.
  7. H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables, I, Acta Math. 99 (1958), 165-202.
  8. H. Helson and D. Sarason, Past and future, Math. Scand. 21 (1967), 5-16.
  9. H. Helson and G. Szegö, A problem in prediction theory, Ann. Mat. Pura Appl. 51 (1960), 107-138.
  10. I. A. Ibragimov, On the spectrum of stationary Gaussian sequences satisfying the strong mixing condition, Theory Probab. Appl. 10 (1965), 85-106; 15 (1970), 24-37.
  11. I. A. Ibragimov and V. N. Solev, A condition for the regularity of a Gaussian stationary process, Soviet Math. Dokl. 10 (1969), 371-375.
  12. G. Kallianpur, A. G. Miamee and H. Niemi, On the prediction theory of two-parameter stationary random fields, technical report No. 178, Center for Stochastic Processes, University of North Carolina, 1987.
  13. H. Korezlioglu et P. Loubaton, Prédiction des processus stationnaires au sense large sur Z² relativement aux demi-plans, C. R. Acad. Sci. Paris Sér. I 301 (1) (1985), 27-30.
  14. A. Makagon and H. Salehi, Stationary fields with positive angle, J. Multivariate Anal. 22 (1987), 106-125.
  15. A. G. Miamee and H. Niemi, On the angle for stationary random fields, technical report No. 92, Department of Statistics, University of North Carolina at Chapel Hill, 1985.
  16. T. Nakazi, The commutator of two projections in prediction theory, Bull. Austral. Math. Soc. 34 (1986), 65-71.
  17. T. Nakazi and K. Takahashi, Prediction n units of time ahead, Proc. Amer. Math. Soc. 80 (1980), 658-659.
  18. V. V. Peller and S. V. Khrushchev, Hankel operators, best approximations, and stationary Gaussian processes, Russian Math. Surveys 37 (1982), 61-144.
  19. Yu. A. Rozanov, On Gaussian fields with given conditional distributions, Theory Probab. Appl. 12 (1967), 381-391.
  20. D. Sarason, An addendum to 'Past and future', Math. Scand. 30 (1972), 62-64.
Pages:
139-153
Main language of publication
English
Received
1990-04-02
Accepted
1991-05-07
Published
1992
Exact and natural sciences