ArticleOriginal scientific text

Title

On a dual locally uniformly rotund norm on a dual Vašák space

Authors 1

Affiliations

  1. Sibeliova 49, 162 00 Praha 6, Czechoslovakia

Abstract

We transfer a renorming method of transfer, due to G. Godefroy, from weakly compactly generated Banach spaces to Vašák, i.e., weakly K-countably determined Banach spaces. Thus we obtain a new construction of a locally uniformly rotund norm on a Vašák space. A further cultivation of this method yields the new result that every dual Vašák space admits a dual locally uniformly rotund norm.

Bibliography

  1. D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), 35-46.
  2. J. Diestel, Geometry of Banach Spaces, Selected Topics, Lecture Notes in Math. 485, Springer, Berlin 1975.
  3. N. Dunford and J. T. Schwartz, Linear Operators I, Interscience Publ., New York 1958.
  4. M. Fabian and S. Troyanski, A Banach space admits a locally uniformly rotund norm if its dual is a Vašák space, Israel J. Math. 69 (1990), 214-224.
  5. G. Godefroy, Existence de normes très lisses sur certains espaces de Banach, Bull. Sci. Math. (2) 106 (1982), 63-68.
  6. G. Godefroy, S. Troyanski, J. Whitfield, and V. Zizler, Smoothness in weakly compactly generated Banach spaces, J. Funct. Anal. 52 (1983), 344-352.
  7. S. Mercourakis, On weakly countably determined Banach spaces, Trans. Amer. Math. Soc. 300 (1987), 307-327.
  8. S. Mercourakis, A dual weakly K-analytic Banach space is not necessarily a subspace of a weakly compactly generated Banach space, a manuscript.
  9. M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110 (1979), 407-438.
  10. S. Troyanski, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math. 37 (1971), 173-180.
  11. L. Vašák, On one generalization of weakly compactly generated Banach spaces, ibid. 70 (1981), 11-19.
Pages:
69-81
Main language of publication
English
Received
1990-11-20
Published
1991
Exact and natural sciences