ArticleOriginal scientific text
Title
On a dual locally uniformly rotund norm on a dual Vašák space
Authors 1
Affiliations
- Sibeliova 49, 162 00 Praha 6, Czechoslovakia
Abstract
We transfer a renorming method of transfer, due to G. Godefroy, from weakly compactly generated Banach spaces to Vašák, i.e., weakly K-countably determined Banach spaces. Thus we obtain a new construction of a locally uniformly rotund norm on a Vašák space. A further cultivation of this method yields the new result that every dual Vašák space admits a dual locally uniformly rotund norm.
Bibliography
- D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), 35-46.
- J. Diestel, Geometry of Banach Spaces, Selected Topics, Lecture Notes in Math. 485, Springer, Berlin 1975.
- N. Dunford and J. T. Schwartz, Linear Operators I, Interscience Publ., New York 1958.
- M. Fabian and S. Troyanski, A Banach space admits a locally uniformly rotund norm if its dual is a Vašák space, Israel J. Math. 69 (1990), 214-224.
- G. Godefroy, Existence de normes très lisses sur certains espaces de Banach, Bull. Sci. Math. (2) 106 (1982), 63-68.
- G. Godefroy, S. Troyanski, J. Whitfield, and V. Zizler, Smoothness in weakly compactly generated Banach spaces, J. Funct. Anal. 52 (1983), 344-352.
- S. Mercourakis, On weakly countably determined Banach spaces, Trans. Amer. Math. Soc. 300 (1987), 307-327.
- S. Mercourakis, A dual weakly K-analytic Banach space is not necessarily a subspace of a weakly compactly generated Banach space, a manuscript.
- M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110 (1979), 407-438.
- S. Troyanski, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math. 37 (1971), 173-180.
- L. Vašák, On one generalization of weakly compactly generated Banach spaces, ibid. 70 (1981), 11-19.