ArticleOriginal scientific text

Title

Korovkin theory in normed algebras

Authors 1

Affiliations

  1. Mathematisches Institut, Universität Münster, Einsteinstraße 62, 4400 Münster, Germany

Abstract

If A is a normed power-associative complex algebra such that the selfadjoint part is normally ordered with respect to some order, then the Korovkin closure (see the introduction for definitions) of T ∪ {t* ∘ t| t ∈ T} contains J*(T) for any subset T of A. This can be applied to C*-algebras, minimal norm ideals on a Hilbert space, and to H*-algebras. For bounded H*-algebras and dual C*-algebras there is even equality. This answers a question posed in [1].

Bibliography

  1. F. Altomare, Korovkin closures in Banach algebras, in: Advances in Invariant Subspaces and Other Results of Operator Theory, Proc. 9th Internat. Conf. on Operator Theory, Timișoara and Herculane 1984, Oper. Theory: Adv. Appl. 17, Birkhäuser, Basel 1986, 35-42.
  2. W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.
  3. F. Beckhoff, Korovkin-Theory in Algebren, Schriftenreihe Math. Inst. Univ. Münster, Ser. 2, Heft 45, 1987.
  4. F. Beckhoff, A counterexample in Korovkin theory, Rend. Circ. Mat. Palermo (2) 37 (1988), 469-473.
  5. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Springer, Berlin 1979.
  6. J. Dixmier, Von Neumann Algebras, North-Holland Math. Library 27, 1981.
  7. N. Dunford and J. T. Schwartz, Linear Operators II, Interscience Publ., 1963.
  8. R. V. Kadison, A generalized Schwarz inequality and algebraic invariants of operator algebras, Ann. of Math. 56 (1952), 494-503.
  9. I. Kaplansky, Groups with representations of bounded degree, Canad. J. Math. 1 (1949), 105-112.
  10. B. V. Limaye and M. N. N. Namboodiri, Korovkin approximation on C*-algebras, J. Approx. Theory 34 (1982), 237-246.
  11. B. V. Limaye and M. N. N. Namboodiri, Weak Korovkin approximation by completely positive linear maps on β(H), ibid. 42 (1984), 201-211.
  12. B. V. Limaye and M. N. N. Namboodiri, Weak approximation by positive maps on C*-algebras, to appear.
  13. L. H. Loomis, An Introduction to Abstract Harmonic Analysis, D. van Nostrand, New York 1953.
  14. M. Pannenberg, Korovkin approximation in Waelbroeck algebras, Math. Ann. 274 (1986), 423-437.
  15. W. M. Priestley, A noncommutative Korovkin theorem, J. Approx. Theory 16 (1976), 251-260.
  16. A. G. Robertson, A Korovkin theorem for Schwarz maps on C*-algebras, Math. Z. 56 (1977), 205-207.
  17. R. Schatten, Norm Ideals of Completely Continuous Operators, Springer, Berlin 1960.
  18. M. Takesaki, Theory of Operator Algebras I, Springer, New York 1979.
  19. B. Yood, Hilbert algebras as topological algebras, Ark. Mat. 12 (1974), 131-151.
Pages:
219-228
Main language of publication
English
Received
1990-05-28
Accepted
1991-04-25
Published
1991
Exact and natural sciences