ArticleOriginal scientific text
Title
Korovkin theory in normed algebras
Authors 1
Affiliations
- Mathematisches Institut, Universität Münster, Einsteinstraße 62, 4400 Münster, Germany
Abstract
If A is a normed power-associative complex algebra such that the selfadjoint part is normally ordered with respect to some order, then the Korovkin closure (see the introduction for definitions) of T ∪ {t* ∘ t| t ∈ T} contains J*(T) for any subset T of A. This can be applied to C*-algebras, minimal norm ideals on a Hilbert space, and to H*-algebras. For bounded H*-algebras and dual C*-algebras there is even equality. This answers a question posed in [1].
Bibliography
- F. Altomare, Korovkin closures in Banach algebras, in: Advances in Invariant Subspaces and Other Results of Operator Theory, Proc. 9th Internat. Conf. on Operator Theory, Timișoara and Herculane 1984, Oper. Theory: Adv. Appl. 17, Birkhäuser, Basel 1986, 35-42.
- W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.
- F. Beckhoff, Korovkin-Theory in Algebren, Schriftenreihe Math. Inst. Univ. Münster, Ser. 2, Heft 45, 1987.
- F. Beckhoff, A counterexample in Korovkin theory, Rend. Circ. Mat. Palermo (2) 37 (1988), 469-473.
- O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Springer, Berlin 1979.
- J. Dixmier, Von Neumann Algebras, North-Holland Math. Library 27, 1981.
- N. Dunford and J. T. Schwartz, Linear Operators II, Interscience Publ., 1963.
- R. V. Kadison, A generalized Schwarz inequality and algebraic invariants of operator algebras, Ann. of Math. 56 (1952), 494-503.
- I. Kaplansky, Groups with representations of bounded degree, Canad. J. Math. 1 (1949), 105-112.
- B. V. Limaye and M. N. N. Namboodiri, Korovkin approximation on C*-algebras, J. Approx. Theory 34 (1982), 237-246.
- B. V. Limaye and M. N. N. Namboodiri, Weak Korovkin approximation by completely positive linear maps on β(H), ibid. 42 (1984), 201-211.
- B. V. Limaye and M. N. N. Namboodiri, Weak approximation by positive maps on C*-algebras, to appear.
- L. H. Loomis, An Introduction to Abstract Harmonic Analysis, D. van Nostrand, New York 1953.
- M. Pannenberg, Korovkin approximation in Waelbroeck algebras, Math. Ann. 274 (1986), 423-437.
- W. M. Priestley, A noncommutative Korovkin theorem, J. Approx. Theory 16 (1976), 251-260.
- A. G. Robertson, A Korovkin theorem for Schwarz maps on C*-algebras, Math. Z. 56 (1977), 205-207.
- R. Schatten, Norm Ideals of Completely Continuous Operators, Springer, Berlin 1960.
- M. Takesaki, Theory of Operator Algebras I, Springer, New York 1979.
- B. Yood, Hilbert algebras as topological algebras, Ark. Mat. 12 (1974), 131-151.