ArticleOriginal scientific text

Title

Two-weight weak type maximal inequalities in Orlicz classes

Authors 1

Affiliations

  1. Mathematical Institute, Czechoslovak Academy of Sciences, Žitná 25, 115 67 Praha 1, Czechoslovakia

Abstract

Necessary and sufficient conditions are shown in order that the inequalities of the form ϱ({Mμf>λ})Φ(λ)CʃXΨ(C|f(x)|)σ(x)dμ, or ϱ({Mμf>λ})CʃXΦ(Cλ-1|f(x)|)σ(x)dμ hold with some positive C independent of λ > 0 and a μ-measurable function f, where (X,μ) is a space with a complete doubling measure μ, Mμ is the maximal operator with respect to μ, Φ, Ψ are arbitrary Young functions, and ϱ, σ are weights, not necessarily doubling.

Bibliography

  1. A. Carbery, S.-Y. A. Chang and J. Garnett, Weights and LlogL, Pacific J. Math. 120 (1) (1985), 33-45.
  2. D. Gallardo, Weighted weak type integral inequalities for the Hardy-Littlewood maximal operator, Israel J. Math. 67 (1) (1989), 95-108.
  3. A. Gogatishvili, V. Kokilashvili and M. Krbec, Maximal functions in ϕ(L) classes, Dokl. Akad. Nauk SSSR 314 (1) (1990), 534-536 (in Russian).
  4. R. A. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1982), 277-284.
  5. M. A. Krasnosel'skiĭ and Ya. B. Rutitskiĭ, Convex Functions and Orlicz Spaces, Gos. Izdat. Fiz.-Mat. Liter., Moscow 1958 (in Russian).
  6. M. Krbec, Two weights weak type inequalities for the maximal function in the Zygmund class, in: Function Spaces and Applications, Proc. Conf. Lund 1986, M.Cwikel et al. (eds.), Lecture Notes in Math. 1302, Springer, Berlin 1988, 317-320.
  7. W. A. J. Luxemburg, Banach Function Spaces, thesis, Delft 1955.
  8. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
  9. L. Pick, Two weights weak type inequality for the maximal function in L(log+L)K, in: Constructive Theory of Functions, Proc. Conf. Varna 1987, B. Sendov et al. (eds.), Publ. House Bulgar. Acad. Sci., Sofia 1988, 377-381.
  10. L. Pick, Weighted inequalities for the Hardy-Littlewood maximal operators in Orlicz spaces, preprint, Math. Inst. Czech. Acad. Sci. 46 (1989), 1-22.
  11. J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, Berlin 1989.
Pages:
207-218
Main language of publication
English
Received
1990-05-09
Published
1991
Exact and natural sciences