ArticleOriginal scientific text
Title
Two-weight weak type maximal inequalities in Orlicz classes
Authors 1
Affiliations
- Mathematical Institute, Czechoslovak Academy of Sciences, Žitná 25, 115 67 Praha 1, Czechoslovakia
Abstract
Necessary and sufficient conditions are shown in order that the inequalities of the form
,
or
hold with some positive C independent of λ > 0 and a μ-measurable function f, where (X,μ) is a space with a complete doubling measure μ, is the maximal operator with respect to μ, Φ, Ψ are arbitrary Young functions, and ϱ, σ are weights, not necessarily doubling.
Bibliography
- A. Carbery, S.-Y. A. Chang and J. Garnett, Weights and LlogL, Pacific J. Math. 120 (1) (1985), 33-45.
- D. Gallardo, Weighted weak type integral inequalities for the Hardy-Littlewood maximal operator, Israel J. Math. 67 (1) (1989), 95-108.
- A. Gogatishvili, V. Kokilashvili and M. Krbec, Maximal functions in ϕ(L) classes, Dokl. Akad. Nauk SSSR 314 (1) (1990), 534-536 (in Russian).
- R. A. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1982), 277-284.
- M. A. Krasnosel'skiĭ and Ya. B. Rutitskiĭ, Convex Functions and Orlicz Spaces, Gos. Izdat. Fiz.-Mat. Liter., Moscow 1958 (in Russian).
- M. Krbec, Two weights weak type inequalities for the maximal function in the Zygmund class, in: Function Spaces and Applications, Proc. Conf. Lund 1986, M.Cwikel et al. (eds.), Lecture Notes in Math. 1302, Springer, Berlin 1988, 317-320.
- W. A. J. Luxemburg, Banach Function Spaces, thesis, Delft 1955.
- B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- L. Pick, Two weights weak type inequality for the maximal function in
, in: Constructive Theory of Functions, Proc. Conf. Varna 1987, B. Sendov et al. (eds.), Publ. House Bulgar. Acad. Sci., Sofia 1988, 377-381. - L. Pick, Weighted inequalities for the Hardy-Littlewood maximal operators in Orlicz spaces, preprint, Math. Inst. Czech. Acad. Sci. 46 (1989), 1-22.
- J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, Berlin 1989.